
 

 

Abstract—Detection of pulmonary nodules in thoracic computed tomography (CT) scans plays a 

crucial role in early diagnosis of lung cancer, which paves the way for early treatment and could 

significantly enhance a patient's chance of survival. Manual detection is highly time-consuming, tedious 

and prone to mistakes, calling for the use of computer-aided detection (CAD), both to improve the 

efficiency and lower the rate of misdiagnosis. Over the past years, a large number of such CAD systems 

have been proposed, many of which follow a two-phase paradigm: 1) nodule candidate detection, and 2) 

false positive reduction. We propose a 3D region proposal U-Net with dense and residual learning for 

pulmonary nodule detection. Our approach abandons the conventional two-phase paradigm, and trains 

a single network for end-to-end detection without the additional false positive reduction process. We 

borrow the region proposal network part from the popular Faster R-CNN framework for object 

detection in natural images, and extend it to 3D with a patch-based scanning scheme. Furthermore, our 

model design draws insights from DenseNet on dense learning, ResNet for residual learning and U-Net 

for small object detection. Overall, we achieved a FROC score of 0.9226. 

 

I. INTRODUCTION 

Past decades have witnessed an increasing attention towards automatic detection of pulmonary nodules in 

thoracic computed tomography (CT) scans. Pulmonary nodules are often considered as a crucial indicator of 

primary lung cancer, which is a leading cause of death in recent years, accounting for an approximate 27% of 

cancer-related deaths in the United States [1] and 1.3 million deaths every year worldwide [2]. Fast and 

accurate detection of such pulmonary nodules plays a crucial role in early diagnosis of lung cancer, which 

paves the way for early treatment and could significantly enhance a patient's chance of survival [3, 4, 5].  

 

Under the CT imaging, pulmonary nodules are often visible as small opaque structures that are roughly of 

spherical shape and brighter than their surroundings. Once correctly identified, size (diameter) measurement 

and appearance characterization are then conducted by radiologists/surgeons to carry out cancer malignancy 

diagnosis [6], which is followed by surgical intervention if necessary. However, manual detection is highly 

time-consuming, tedious and prone to mistakes, calling for the use of computer-aided detection (CAD), both 

to improve the efficiency and lower the rate of misdiagnosis. 

 

Over the past years, a large number of such CAD systems have been proposed, many of which follow a two-

phase paradigm: 1) nodule candidate detection, and 2) false positive reduction. In the first phase, a relatively 

coarse scan is typically performed over the whole image volume to locate a considerable set of potential 

candidates (often with high sensitivity but also high false positive rate), which then go through a more 

rigorous screening process to filter out false positive detection in the second phase. Traditional candidate 

detection methods include the use of intensity thresholding, shape curvedness and mathematical morphology 

[5, 7, 8]. Traditional false positive reduction methods include combinatorial analytics over shape, position, 

intensity, gradient features, texture characteristics and contextual information [5, 9]. 
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More recently, deep learning with convolutional neural networks (CNN) has gained wider popularity. Most 

notably, Ding et al. [10] proposed using a 2D Faster R-CNN [12] that incorporates an ImageNet pre-trained 

VGG-16 model [11] to perform candidate detection, followed by a 9-layer 3D CNN (6 convolutional layers 

and 3 fully connected layers) for false positive reduction. Their methodology yielded a FROC-score (average 

sensitivity over 1/8, 1/4, 1/2, 1, 2, 4, 8 false positives per scan) of 0.893 on the LUNA dataset (topping the 

LUNA16 leaderboard in May 2017). 

 

However, it requires training two separate networks for the two phases, introducing considerable engineering 

work. Moreover, the 2D Faster R-CNN method can be further divided into two components: a region proposal 

network (RPN) and a region-of-interest (ROI) classifier, both produce binary classification (nodule vs. non-

nodule) and bounding box regression (if nodule) outputs, making the design a bit redundant. Other relevant 

works include the use of 2D multi-view CNNs proposed by Setio et al. [13] to learn representative features for 

pulmonary nodule detection. This method can incorporate relatively wide volumetric spatial information for 

detection by extracting many 2D patches from differently oriented planes, and achieved 82.66% In terms of 

false positive reduction alone, Dou et al. [14] proposed using a multi-level contextual 3D CNNs to perform 

classification over three differently sized patches centering the nodule candidate, followed by weighted label 

fusion. They achieved a FROC score of 0.827 on the false positive reduction track of LUNA16 challenge. 

 

 

II. METHODS 

We propose a 3D region proposal U-Net with dense and residual learning for pulmonary nodule detection. 

Our approach abandons the conventional two-phase paradigm, and trains a single network for end-to-end 

detection without the additional false positive reduction process. We borrow the region proposal network part 

from the popular Faster R-CNN framework [12] for object detection in natural images, and extend it to 3D 

with a patch-based scanning scheme. Furthermore, our model design draws insights from DenseNet [15] on 

dense learning, ResNet [16] for residual learning and U-Net [17] for small object detection. Overall we 

achieved a FROC score of 0.9226. 

 

A. Lung Segmentation 

To narrow the scope of detection, lung segmentation is performed as a preliminary step. The lungs are the 

primary organs of the respiratory system in the human body, and consist of a left and a right lung, situated 

within the thoracic cavity of the chest. Under the CT imaging, the lung region mainly contains air, which has a 

value of around -1000 in Hounsfield scale. The lungs and their immediate surroundings may expand to over 10 

liters of volume during breathing in, and contracting to around 1 liter during breathing out. For that reason, 

intensity thresholding can be applied to lung-specific level, followed by morphological methods including 3D 

connected component analysis, region erosion, region expansion, and volume thresholding to segment the lungs. 

 

B. Nodule Detection 

Since the image volume is too large to fit into a standard GPU for CNN processing directly even after lung 

segmentation. A window-based detection approach is employed, where a 3D window slides over the lung 

region and a cubic patch is extracted each time, fed to the 3D RPN for nodule detection. Figure 1 illustrates 

the detection framework, which is a dual-path network consisting of two U-shaped sub-networks: one follows 

the DenseNet paradigm while the other follows the ResNet paradigm. A label fusion is applied using non-

maximal suppression (NMS) method [12]. The neural network implementation was based on the popular 

PyTorch framework [18]. Further details may not be published at this point due to paper preparation, and will 

be released later.  



 

 
Figure 1. 3D region proposal U-Net with dense and residual learning for pulmonary nodule detection 

 

III. RESULTS 

An experimentation has been carried out on the LUNA16 dataset to evaluate the proposed methodology using 

5-fold cross validation. According to the LUNA16 standard, nodule detection performance is evaluated using 

the Free-Response Receiver Operating Characteristic (FROC) analysis, which calculates the average sensitivity 

over 7 false positive rates: 1/8, 1/4, 1/2, 1, 2, 4, 8 FPs per scan. Our best performance achieves detection 

sensitivity respectively at [0.8015, 0.8606, 0.9199, 0.9526, 0.9682, 0.9776, 0.9776], obtaining an average 

FROC score of 0.9226, as shown in Figure 2. We trained the model for 500 epochs, and the average FROC 

scores over different epochs are shown in Figure 3. 

 
Figure 2. FROC analysis over 7 false positive rates 



 

 
Figure 3. Average FROC scores over different numbers of training epochs 

 

The experiments were performed on a standard machine with two NVIDIA K80 GPUs, where network 

training took around a week for each fold of cross validation. At test time, end-to-end workflow took less 

than 1 minute, among which, lung segmentation took around 20~30s and nodule detection by network 

inference took around 10~20s, depending on the size of CT image.  
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