
FALSE POSITIVE REDUCTION FOR NODULE DETECTION IN CT SCANS USING A
CONVOLUTIONAL NEURAL NETWORK: APPLICATION TO THE LUNA16 CHALLENGE

Thomas de Bel, Cas van den Bogaard, Valentin Kotov, Luuk Scholten, Nicole Walasek

Radboud University
Data Science, ICIS

Nijmegen

ABSTRACT

We propose a method for automatic false-positive reduction
of a list of candidate pulmonary nodules, extracted from tho-
racic computed tomography scans, using a convolutional neu-
ral network operating on patches extracted from each of the
three orthogonal planes. Batch normalisation was applied
to reduce overfitting. Data augmentation on the positive set
of candidates was used to balance the training set. Training
and testing was performed on the LUNA16 competition data
set. The resulting AUC score at the patch level was 0.9944
on average per fold in 10-fold cross-validation. The system
achieved a competition score of 0.784, detecting 81.5% of all
nodules at an average of 1 false positive detections per scan.

1. INTRODUCTION

This report covers our work on the LUNA16 competition
(luna16.grand-challenge.org), which we entered
as part of the course “Computer Aided Diagnosis in Medical
Imaging”, edition 2016, Radboud University Nijmegen. The
LUNA16 challenge asks the contestants to build a computer
aided diagnosis (CAD) system for early detection of pul-
monary nodules from computed tomography (CT) scans. It is
important to detect these nodules because a fraction of them
represent lung cancer. We participated in the false positive
reduction track of the challenge where teams analyze a set of
nodule candidates provided by the challange organizers. In
earlier phases of the course we developed a lung segmenta-
tion algorithm and a candidate detector, but we did not use
these in this work.

To identify the true-positive nodules among the candi-
dates, we built a convolutional neural network (CNN) that
takes patches centered on the candidates as input and for each
such input predicts the likelihood of belonging to either of the
classes, i.e. “nodule” and “not-a-nodule”. The performance
of the network was measured by calculating the free-response
receiver operating characteristic (FROC).

2. DATA

The data for the LUNA16 challenge consists of 888 CT-
scans. The slice thickness of the scans ranges between 0.8
and 2.5 mm. The voxel values of the CT-scans are encoded
on the Hounsfield Unit (HU) scale. Isotropic resampling is
performed on all scans, i.e. the images are transformed such
that one pixel uniformly represents one millimeter in all three
directions of the scan.

3. METHOD

3.1. Patch Extraction

For this task, the representations we look at characterize each
candidate on three geometric planes ((x, y): axial, (y, z):
sagittal, and (x, z): coronal plane). From each of those
planes, three patches are extracted at three locations on the
free axis, with the candidate at the center: the planes with
the exact candidate location, as well as 2 pixels/millimeters
to both directions on the remaining free axis (in z, x or y
direction). The resulting patches measure 6 × 6 centimeters,
centered around the candidate location, and are handled and
saved as three-dimensional (3×60×60) numpy arrays – bear-
ing some structural resemblance to an RGB image. The pixel
values are still in Hounsfield units (no loss of fine-grained
detail) and the three channels don’t represent different wave-
lengths but represent spatial differences.

3.2. Data Augmentation

The class frequencies in the data are very imbalanced: there
are three orders of magnitude more negative than positive ex-
amples. The issue of learning a trivial classifier during the
training phase which always assigns the label of the negative
class is addressed by applying methods of data augmentation
on the positive class, in order to artificially balance the data
set. This way, we don’t have to resort to throwing away infor-
mation on the side of the negative class, and can actually take
advantage of the excess of negative training cases. The fol-
lowing augmentations are assumed to preserve patterns that

luna16.grand-challenge.org

are distinctive of the class labels, i.e. label preserving trans-
formations:

• vertical and horizontal flip

• random cropping to 3×52×52 (without constraints on
the locations of the cropped images within the 60× 60
source patch, i.e. the candidate center might be located
4, 3, 2, 1 or 0 pixels off the center in the 52× 52 result)

These augmentations are applied at random to random se-
quences of the full set of positive instances. This procedure is
repeated several times. For the negative instances, only ran-
dom cropping to 3 × 52 × 52 is applied in order to make the
patches the same size.

The data augmentation is implemented with the IMAGE-
DATAGENERATOR() of Keras [Chollet, 2015], a wrapper for
Theano [Theano Development Team, 2016] and Tensor Flow
[Abadi et al., 2016]. This choice comes in handy as it allows
for the augmentations to be made on-the-fly, which helps to
avoid the need to write many slight variations of the same
patch to the file system just to load them back into memory for
processing, efficiently and effectively speeding up the whole
training procedure. This method has the additional benefit of
yielding an equal amount of positive and negative instances
in each mini-batch, all sampled from the set of negative in-
stances and the set of augmented positive images.

On a further note, this augmentation pipeline is applied
only during training, as only during this phase there is a need
for balancing the two classes (and as we didn’t want our test-
ing method to deviate from the competition standard).

3.3. Patch Sizes

We found that the size of the cropped-out patches was cru-
cial for our network to be able to distinguish true nodules
from false positives. When the extracted patches were smaller
(40× 40 instead of 60× 60 with 52× 52 crops), it tended to
classify all test patches as positive.

3.4. Preprocessing of the patches

Before feeding the training data to the network we subtracted
the overall training mean from each sample, divided by the
overall standard deviation. The same procedure was applied
during testing.

3.5. CNN Configuration

The network has 3 convolutional layers, with max-pooling
layers of size 2 × 2. Batch normalization was applied after
each max-pooling layer to reduce overfitting. The network
takes 3× 52× 52 patches as input. The configurations of the
convolutional layers can be viewed in table 1. For the acti-
vation functions we used rectified linear units (ReLU). The
last convolutional layer is connected to a dense layer using

Fig. 1: Architecture of the convolutional neural network.

Table 1: Convolutional layer architecture.

of kernels size (x× y × z)
C1 24 5× 5× 1
C2 32 3× 3× 1
C3 48 3× 3× 1

512 neurons. We used 2 dense layers in total, where the last
layer is connected to a softmax layer for classification. The
weights were initialized using He uniform initialization [He
et al., 2015]. For the update rule we used Nesterov accel-
erated gradient descent with a learning rate of 0.01, a decay
of 1 · 10−3 and a momentum of 0.9. Our architecture is dis-
played in figure 2. Our chosen architecture is based on the
one in [Setio et al., 2016].

3.6. Training and testing

The approach used in training and testing the network is 10-
fold cross-validation. The data set was divided into 10 sets
of approximately equal size. Of these subsets, 9 are used for
training the network. The one subset left is then used for test-
ing the results. This procedure is repeated for a total of 10
times, each time with a different testing set. All training pro-
cedures ran for 80 epochs, with a random sample of 20,000
negative patches and a mini-batch size of 128. During testing,
the average prediction of the four corner 3×52×52 crops and
the center 3×52×52 crops is taken per plane. Subsequently,
the average over the three planes for each candidate nodule is
computed.

4. EXPERIMENTS AND RESULTS

By feeding the preprocessed and augmented 52×52 patches
into the network structure described in figure 2, we were able
to achieve very good results on the validation folds with re-
spect to the AUC scores. These results can be viewed in table
2.

Figure 2 shows a plot of the free-response receiver oper-
ating characteristic (FROC).

Fig. 2: The FROC-curve

Subset AUC
0 0.9944
1 0.9976
2 0.9981
3 0.9907
4 0.9936
5 0.9918
6 0.9958
7 0.9907
8 0.9929
9 0.9985

Table 2: AUC results for cross validation.

5. DISCUSSION

Part of the data augmentation we applied was flipping the
images horizontally and vertically. This augmentation stems
from the realization that the nodules should be fairly point-
symmetrical. One could further exploit this symmetry by
not only flipping the images, but applying random rotations
as well. To avoid the need to apply padding to fill the pe-
riphery of rotated patches, creating artifacts that would only
be present in the training data, this additional augmentation
would require the extraction of larger initial patches.

Furthermore, the deficits in our FROC-curve might be
partially explained by two factors: first of all our candidates
did not contain all true positives to begin with, secondly we
might have missed a few true positives as we only extracted
patches for those candidates around which we were able to
extract 60×60 patches. We did not extract patches for candi-
dates that were close to the image boundary. In hindsight we
should have included those candidates in order to decrease the
chance of missing pleural nodules. If we had more time we
would think about ways to include those lost true positives in
order to improve our FROC score.

Another important issue to consider is the way the three

different 2D-planes are being distinguished. Feeding patches
from all directions into the same network allows the training
of the network on a larger number of samples, which is im-
portant considering the low number of true positives and the
limits of data augmentation.

Also impacting our performance were timing constraints
that are due to the scope of this project. We were therefore
not able to experiment a lot with the hyper-parameters, such
as learning rate, momentum and learning rate decay. We were
also not able to test and contrast different network architec-
tures, thus having to rely on intuition to create a network that
reaches a reasonable performance on this problem. Due to
this limited amount of experimentation, we are reasonably
confident that our results could be further improved by sys-
tematic parameter fine-tuning.

Our resulting framework is capable of performing proper
9 out of 10 cross-validation without facing memory errors.
Furthermore, it allows balancing of the classes by data aug-
mentation on the fly. In our opinion, the resulting high AUC
scores reflect our CNNs capability of accurately classifying
nodules.

6. REFERENCES

[Abadi et al., 2016] Abadi, M., Agarwal, A., Barham, P.,
Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis,
A., Dean, J., Devin, M., et al. (2016). Tensorflow: Large-
scale machine learning on heterogeneous distributed sys-
tems. arXiv preprint arXiv:1603.04467.

[Chollet, 2015] Chollet, F. (2015). Keras. https://
github.com/fchollet/keras.

[He et al., 2015] He, K., Zhang, X., Ren, S., and Sun, J.
(2015). Delving deep into rectifiers: Surpassing human-
level performance on imagenet classification. In Proceed-
ings of the IEEE International Conference on Computer
Vision, pages 1026–1034.

[Setio et al., 2016] Setio, A. A. A., Ciompi, F., Litjens,
G., Gerke, P., Jacobs, C., van Riel, S. J., Wille, M.
M. W., Naqibullah, M., Sánchez, C. I., and van Gin-
neken, B. (2016). Pulmonary nodule detection in ct im-
ages: false positive reduction using multi-view convolu-
tional networks. IEEE transactions on medical imaging,
35(5):1160–1169.

[Theano Development Team, 2016] Theano Development
Team (2016). Theano: A Python framework for fast
computation of mathematical expressions. arXiv e-prints,
abs/1605.02688.

https://github.com/fchollet/keras
https://github.com/fchollet/keras

	 Introduction
	 Data
	 Method
	 Patch Extraction
	 Data Augmentation
	 Patch Sizes
	 Preprocessing of the patches
	 CNN Configuration
	 Training and testing

	 Experiments and Results
	 Discussion
	 References

