ZNET - LUNG NODULE DETECTION

Moira Berens, Robbert van der Gugten, Michael de Kaste, Jeroen Manders, and Guido Zuidhof*

*IN ALPHABETICAL ORDER, ALL AFFILIATED WITH RADBOUD UNIVERSITY NIJMEGEN.

ABSTRACT

The goal of the LUNA16 (Lung Nodule Analysis 2016)
challenge is to automatically detect nodules in 888 volumet-
ric CT images. This is a description of the approach used
in the nodule detection track which consists of two stages:
candidate detection and false positive reduction. For the first
part we employ the Unet fully convolutional network archi-
tecture for candidate selection on axial slices. For the subse-
quent false positive reduction we feed three orthogonal slices
of each candidate to the same wide residual network. Our
approach achieved an average FROC-score of 0.8111. In the
false positive track, which uses the candidate set provided by
the competition organizers, a score of 0.758 was achieved.

1. METHOD DESCRIPTION

1.1. Candidate selection via Unet

In the nodule detection track one is required to generate their
own candidates from the raw scan files. Initially, we devel-
oped a Laplacian of Gaussian based hand-crafted approach,
which achieved a high recall rate (around 0.98), but very poor
precision (0.000005). Training on such an unwieldy, highly
unbalanced dataset would be a challenge. Also, the false pos-
itive rate of a classifier trained on this set would probably be
higher as it has more opportunities to make these errors.

We then employed the fully convolutional neural network
architecture Unet [9] for this task. Please refer to the original
paper for more details on this architecture. The original archi-
tecture had a tendency to overfit on the train set. To combat
this we made some modifications to the Unet architecture:

e The input shape was changed to 512x512. Unet being a
fully convolutional network, this also changed the out-
put size, which then becomes 324x324. It was trained
on the x,y planes of CT scans, with a uniform spacing
of 1mm per voxel. This output size is large enough to
contain the full lungs in every image.

e Batch normalization was added in the contraction part
of the network. Due to the small batch size, ordinary
batch normalization resulted in erratic behavior. To
combat this, we set the o parameter to a value of 0.3.

e Dropout makes little sense in a fully convolutional net-
work, hence, we only add it sparsely in specific areas,

which are those in the upsampling part of the network,
between the convolutional layers.

Even with these changes the network still overfit very
rapidly despite extensive data augmentation. Finally, we
found a way to prevent this from happening in the form of
spatial dropout [3]. It is also called feature dropout, and
it involves randomly dropping out entire feature maps in-
stead of individual activations. This makes a lot more sense
in a fully convolutional setting as ordinary dropout results
is similar to dropping random pixels in intermediate image
representations. We implemented this as a custom layer in
Lasagne/Theano and added it to the “bridge” connections in
the Unet (crossing the gap in the U shape).

As ground truth segmentations we draw spheres at the lo-
cations of the nodules with the radius equal to that of the an-
notated nodule radius. Only slices with at least one pixel be-
ing a nodule were presented to the network. To further deal
with the class imbalance, the weight of the loss of all the true
pixels in a batch was set to equal the weight of all the other
pixels. Pixels outside of the segmentation mask after dilation
with a 11x11 sphere kernel were assigned a zero weight in
this weight map.

The candidates are extracted per probability map output
of the Unet (in the X,y plane). First the slice is thresholded
and then eroded with a + shaped kernel (3x3). The value to
threshold at was determined on the validation subset. After
erosion the candidates are grouped using connected compo-
nents. The coordinates of the combined candidate equals to
the center of mass of hits components. See figure 1 for exam-
ple images of this process.

1.1.1. Candidate Merging

After the candidates are selected with Unet, various filtering
and merging steps are applied in this specific order:

e Distance merging

e Nodule merging

Distance Merging

Because the candidates are extracted from a 2D environment,
in the most probable case, it will find candidates in the third
dimension very close to each other. In order to reduce these
candidates, a distance-based merging algorithm is applied on
the base candidates extracted from Unet output. The distance



is euclidean and the merging is done on world-coordinates in
millimeters. The candidates that are too close to one another
are replaced by one candidate at the mean of these candidates.

(a) Unet output

(b) Candidates

Fig. 1. From Unet output to candidates (before merging).
The above image (a) is the raw output from the Unet CNN,
(b) shows this image after thresholding and erosion. The red
crosses indicate the coordinates of each candidate, which is at
the center of mass for every connected component.

TP- and FP-based merging
This merging step filters the candidates based on distance to
true positive-candidates (nodule) within the provided anno-
tations file. If a candidate is ’too close’ to an annotation, it
is discarded. Here, we throw away candidates that are on
the very edge of a nodule (within 30mm from the center of

the nodule). Candidates that are within the same annotation
(within the radius of a nodule) are merged into one candidate
by taking the mean coordinate.

Precision & Recall

In order to evaluate the performance of the approaches the
888 slides are divided into 10 subsets. Using these sets, a
10-fold cross validation can be performed. Here a method
is developed and tweaked on 9 of the 10 subsets, the other
subset is then predicted using the model trained on the first 9.
This is repeated for all 10 subsets, until all subsets have been
predicted.

Unet was trained and validated on 8 subsets at a time (so
the other 2 splits could be predicted), hence it was a 5-fold
cross validation. The final result of the candidate selection
is a candidate set with a precision of 0.00509 and a recall of
0.95946.

1.2. Residual Convolutional Neural Networks

For the false positive reduction step in the pipeline we make
use of deep convolutional neural networks. As input data we
fed our models with 2D images. For every candidate three
different slices were created. One slice over the x and y axis,
one slice over the x and z axis, and one slice of the y and
z axis, with the candidate centered the middle of each slice.
These planes have a size of 64 by 64 pixels. All these slice
were given separately to a single network, there was no fu-
sion within the network. The predicted output values of the
network for these three different slices were ensembled in the
end by taking the mean. This has a regularizing effect, one
could view it as three separate networks with tied weights for
all three orientations.

The scaling factor of all scans is known, and because hav-
ing a scale invariant method is not a goal in this challenge,
all scans were resampled such that the scaling factor was
the same for all slices via linear interpolation. A uniform
0.5mm per voxel scaling was chosen in all dimensions. The
64x64 patches thus correspond to 32x32 millimeters in the
real world.

We employed wide residual networks as proposed by
Zagoruyko et al. [2]. They showed that wider and less deep
residual networks outperform their deeper and thinner coun-
terparts both in accuracy and efficiency. Also, they showed
that in such an architecture - contrary to ordinary residual
networks - dropout can be utilized to prevent overfitting [8].
Figure 2 provides an overview of the architecture. We used
N=5, k=6 for the final submissions, resulting in a network
with 32 convolutional layers.



group name | output size | block type = B(3,3)
convl 64 x 64 i [3x3, 16]_
3x3, 16xk
conv?2 64 x 64 _ 3x3. 16Xk _><N
[ 3x3,32xk |
conv3 32x32 _ 33, 32xk | xN
[ 3x3,64xk |
conv4 16 x 16 3x3. 64xk xN
avg-pool 1x1 [8 x 8]

Fig. 2. Structure of the wide residual networks. Network
width is determined by factor k. Groups of convolutions are
shown in brackets, where NV is a number of blocks in group.
The final softmax classification layer is omitted for clearance.

Xavier initialization [6] was used for weight initialization,
ADAM as optimization method [7]. Leaky Rectified Linear
Units were used as nonlinearities throughout the network.

1.3. Data augmentation

Data augmentation is a key aspect in improving the predic-
tion scores since it acts as a regularizer and therefore prevents
overfitting. For Unet and ResNet we used the data augmenta-
tions as shown in table 1. The augmentation values are ran-
domly determined for each image every epoch between the
ranges shown in the table.

Additionally to improve the test set scores, test time augmen-
tation was used. For every candidate in the test set a number
of images with different augmentations is returned, of which
the predicted probabilities averaged. For the final results only
flips were used due to time constraints, resulting in 4 images
per original image. Empirically evaluated on one subset, it
yielded an improvement of our average FROC score from
0.902to 0.911.

Table 1. Augmentations used in the various networks, all
with uniform probability distributions.

Unet Wide ResNet

Flip (axes) X XY
Rotation (degrees) -20,20 -20,20
Zoom (factor) 0.9,1.1 0.9,1.1
Translation (pixels) -3,3 -3,3
Gaussian noise (std) 0.05 -

1.4. Learning rate reduction

Reducing the learning rate over time can help settle into a
nice local minimum instead of continuously stepping over it
due to a too large update step. Following in the footsteps of
the original authors of ResNet we applied a learning schedule

where the learning rate is decreased by 90% after epoch 80
and epoch 125. We did not further optimize these values.

For UNet we apply a simple rule: if the loss had not de-
creased the last 6 epochs, the learning rate is decreased by
90%.

1.5. Prediction equalization

Simply concatenating the predictions of the models for the
splits results in a poor FROC score at the false positive rates
used for evaluation. This is due the difference in distribu-
tions of predictions for different models. One model may
have a false positive rate of 1 per scan at decision boundary
0.9, whereas for another model this may be at 0.95. Calculat-
ing the score for the individual models we attain much higher
scores than after simply merging the predictions.

To deal with this, a simple postprocessing step was ap-
plied to the output of the individual networks. For every
model the 200th highest probability is determined, which is
subtracted from all predictions, which are then divided by the
highest probability.

2. IMPLEMENTATION AND HARDWARE

All convolutional networks were implemented using a combi-
nation of the Lasagne and Theano libraries[4][5] for Python,
which allow for employing the GPU to train these networks.
We trained on a large range of CUDA enabled graphics cards
including the Tesla K40M, Titan X, GTX 980, GTX 970, GTX
760 and the GTX 950M laptop graphics card. All were ca-
pable of training the rather modest wide ResNet incarnations,
albeit with different batch sizes. For training the UNet ar-
chitecture a graphics card memory size greater than 2GB is
required.

The full implementation of our method is available online'.

3. RESULTS AND DISCUSSION

The competition leaderboard score is the average FROC value
at false positive rates of 1/8, 1/4, 1/2, 1, 2, 4 and 8 false posi-
tives per scan.

We trained a Wide ResNet with N and & values of 5 and
6, and achieved a performance of 0.812 on the competition
leaderboard in the nodule detection track. A score of 0.758
was achieved in the false positive reduction track, which in-
volves applying the false positive reduction network on a can-
didate set provided by the competition organizers.

We think that with a different fusion strategy for the infor-
mation in the three slices per candidate this can be improved.
For instance, encoding the three orientations in color channels
of the input image of the network. Another possible approach

Uhttps://www.github.com/gzuidhof/lunal6



is a late fusion architecture with different branches for the in-
put orientations.

Also, we feel that the processing of the output of the can-
didate selection CNN can be improved. A simple improve-
ment could be using 3D connected components instead of
2D connected components on the different slices. This might
make the merging by distance step obsolete.

4. REFERENCES

[1] http://lunal6.grand-challenge.org/

[2] Zagoruyko, S., & Komodakis, N. (2016). Wide Residual
Networks. arXiv preprint arXiv:1605.07146.

[3] Oliveira, G. L., Valada, A., Bollen, C., Burgard, W., &
Brox, T. (2016). Deep Learning for Human Part Discovery
in Images. In IEEE International Conference on Robotics
and Automation (ICRA).

[4] Dieleman, S., Schiter, J., Raffel, C., Olson, E., Snderby,
S. K., Nouri, D., & Kelly, J. (2015). Lasagne: First Re-
lease. Zenodo: Geneva, Switzerland. ISO 690

[5] Bergstra, J., Breuleux, O., Bastien, F., Lamblin, P., Pas-
canu, R., Desjardins, G., & Bengio, Y. (2010, June).
Theano: A CPU and GPU math compiler in Python. In
Proc. 9th Python in Science Conf (pp. 1-7).

[6] Glorot, X., & Bengio, Y. (2010, May). Understanding the
difficulty of training deep feedforward neural networks. In
Aistats (Vol. 9, pp. 249-256).

[7] Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A.,
Salakhutdinov, R., & Bengio, Y. (2015). Show, attend and
tell: Neural image caption generation with visual attention.
arXiv preprint arXiv:1502.03044, 2(3), 5.

[8] He, K., Zhang, X., Ren, S., & Sun, J. (2015). Deep
residual learning for image recognition. arXiv preprint
arXiv:1512.03385.

[9] Ronneberger, O., Fischer, P., & Brox, T. (2015, October).
U-net: Convolutional networks for biomedical image seg-
mentation. In International Conference on Medical Image
Computing and Computer-Assisted Intervention (pp. 234-
241). Springer International Publishing.



