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Abstract—Pulmonary Nodule detection in CT imaging is a 

very critical, yet very challenging medical imaging analysis task 

due to the wide variability of shape, textual and scale of 

pulmonary nodules. Deep Convolution Neural Networks are now 

considered the state-of-the-art in many object detection 

applications in computer vision. In this paper, we propose a two-

stage nodule detection framework that detects nodule candidate 

with convolution neural networks trained separately on 2d axial 

slices and 3d CT volume, followed by a deep residual 3d neural 

network to reduce false alarms. The proposed framework shows 

the superior performance on LUNA16 dataset, yielding the final 

0.9499 free receive operating characteristic score.  
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I.  INTRODUCTION  

Lung cancer is the known leading cause of death to 
mankind. Early diagnosis of lung cancer increases the patient's 
chance to survive. In clinical practices, Computer Tomography 
(CT) is commonly-used lung cancer screening protocol that   
enables radiologists examining the existence of suspicious 
nodules. However, finding nodules in CT scans can be time 
consuming and error-prone due to the high variance of size, 
shape, texture, location of pulmonary nodules in patient studies. 
Many efforts have been made in developing automated systems 
that locate nodule in CT scans, so-called the Computer Aided 
Nodule Detection System [1]. The Deep Convolution Neural 
Networks (DCNN), with superior object detection performance 
in natural images, is considered the state-of-the-art in medical 
imaging object detection applications as well [2].  In this paper, 
we introduce a two-stage nodule detection framework based on 
DCNN, consisting of 1) to detect interest of regions with 
possible nodule appearances; 2) to reduce the non-nodule 
candidates from the first step; Since the CT imaging is three 
dimensional volume data and nodules are intrinsically 3d 
objects, DCNN filters learned directly on the overall 3d CT 
volume enables capturing the complete spatial context of 
nodules. However, due to the computational intensity and limit 
amount of Graphic Process Unit (GPU) memory, many 
researchers compromise for training object detection DCNN 
over 2d axial slices of CT imaging. In this research, we use 
both 2d and 3d DCNN filters in nodule candidate detection.  
Once the nodule candidate is located, we cropped multi-scale 
fixed size region patches from original CT volume based on the 
candidate center. Then feed into a 3d DCNN with dense and 
residual connections to eliminate further the false positive 
nodule candidates.     

II. NODULE CANDIDATE DETECTION 

A. Three-dimensional DCNN for segmentation 

Inspired by the U-shaped DCNN [3], we similarly propose 
a 3d DCNN that exploits up-sampling to restore input 
resolution from the pooled feature maps for nodule object 
segmentation. The proposed DCNN takes image patches of 
80 80 80 size as input, feeding into three down-sampling 
blocks. Each block consists of consecutive convolution filters 

with size 3 3 3, stride 1 and padding for reserving input 

resolution, followed by the 2  2  2 max pooling layer to 
reduce spatial resolution by 2.  The coarsest resolution features 
are convoluted with 3 3 3 filters twice to learn high-level 
nodule semantics. Then the resulting feature maps are feed into 
consecutive up-sampling blocks, with each block up-sampling 
features by 2 to finally restore the input resolution. For finer 
restoration of spatial resolution, we merge the up-sampled 
features with down-sampled features at the same spatial 
resolution. Finally, a 11 1 convolution is used to reshape 
the feature maps to original input shape, before the sigmoid 
activation is applied to produce probability segmentation maps. 
The structure of proposed 3d DCNN is shown in Figure 1. To 
reduce the training covariate drifting and the model complexity, 
we adopt batch normalization block wise and a dropout layer to 
keep 0.25 activations from the coarsest resolution. The RELU 
non-linearity is used for all of convolutions filters as activation 
function.   

At training stage, each training CT image is firstly 
interpolated into 1.0 mm spacing for axial, coronal and sagittal 
directions and pixels are normalized to (0, 1) range from lung 
window. Furthermore, Normalized CT images are standardized 
to have zero mean and unit variance. Then we apply 
commonly-used data augmentations such as up-down and left-
right flip, Gaussian blur and random shifting from the cropping 
center. Finally, a training step is to minimize the DICE 
coefficient over mini-batch of training samples using Adam 
optimization with initiative learning rate 10

-4
. The choice of 

mini-batch size is up to GPU memory constrains. 

At testing stage, since the proposed network is fully-
convolutional, it can be used for any size of input data. We 
interpolate test CT images into 1.0 mm spacing for axial, 
coronal and sagittal axes, and then slide over the resulting 
image with the predefined window size and 25% overlapping 
rate. Each sliding window is further convolved with the 
proposed 3d DCNN straightly. This approach is very efficient 



with GPU implementation and due to the memory limitation of 
our experimental hardware; the size of sliding window is up to 
128. Finally, we simply average the probability outputs to 
smooth the aggregated responses over overlapping region 
caused by sliding window.  

B. Two-dimensional volume DCNN for segmentation 

We adopt the same DCNN structure as the proposed 3d 
detection network, with exceptions of using 2d filters and input 
images of size 128128 for training. Moreover, at training and 
testing stage, the input axial slices are interpolated into 0.6 mm 
spacing for all three directions, to allow convolution filters 
extract finer details from local regions comparing to the 
proposed 3D DCNN. For data augmentation, the 2d DCNN in 
addition uses random cropping from the nodule center, together 
with common approaches used in the 3d network.  We train the 
2d DCNN using DICE coefficient loss and Adam optimizer as 
the as used in training the 3D counterpart. Since the 2d DCNN 
requires much less parameters to compute and less memory 
occupation, we apply the 2d DCNN straightly over the input 
image in convolution manner for detection at testing stage, 
instead of sliding window approach used in proposed 3D 

DCNN.   

C. Combination Of Nodule Candidates 

After thresholding of output probability maps from 2d and 
3d detection DCNNs, the nodule regional masks are obtained. 
We hereby denote M2 for the mask generated by 2d DCNN 
and M3 for 3d DCNN. we merge the two masks for each image 
in following manner 1) for M2 nodule regions, reserve ones 
that do not intersect with any M3 regions, and keep nodule 
regions in M3 which are not overlapping with any M2 regions; 
2) for overlapping regions, we use the intersection region from 
M3 and M2 regions.    

III. FALSE POSITIVE REDUCTION 

Nodule candidates from detection step may contain many 
false alarms, including blood vessels, thickening of lung 
fissures and pleura, and scars etc. The major reason is that 
classification of nodule and non-nodule objects from only 
visual clues is considered difficult even for clinical experts, 
especially with the objects of small size and focal opacity. The 
goal of false positive reduction step is to eliminate non-nodule 
candidates to the upmost extent. In this paper, we design a 
residual structure of 3d DCNN binary classifier for the false 
positive reduction, shown in Figure 2.  

A. Training 

Firstly, CT volumes are interpolated into 0.8 mm spacing 
for axial, coronal and sagittal directions and pixel intensity is 
normalized to (0, 1) from lung window.  Then we crop patches 
from normalized CT volume using bounding boxes of nodule 
candidates and patches are further resized to a fixed size, 
40 40 40 in our experiment.  The crop size is 1.5 times 
larger than the original bounding box size. In addition, patches 
are standardized to have zero mean and unit variance. Due to 
the imbalance of positive and negative candidates, we augment 
positive patches to even the size of the positive and negative set. 
Data augmentation approaches are 1) horizontal and vertical 
flips. 2) Random variations in patch intensity within (-0.15, 
0.15). 3) Gaussian blur; 4) rotation at random angles within (-
60, 60) degree range. 5) Random cropping, with crop size N 
times larger than the bounding box size, where N is uniformly 
distributed random variable within (1.25, 1.75). Stochastic 
gradient descent with the momentum of 0.9 and initiative 
learning rate 0.001 is used as the optimizer to minimize the 
cross entropy loss for training. We heavily used batch 
normalization in residual blocks to accelerate training.  All 
convolution layers' activation function is RELU non-linearity. 

Figure 1: 3D DCNN for segmentation, Dash line denotes passing finer 

resolution feature maps to coarser level using concatenation 



 

B. Testing 

At testing stage, CT images are preprocessed and patches 
are cropped the same way as we do in training stage. Also, we 
flip and rotate candidate patches using same approaches at 
training stage, and ensemble probability outputs of patches of 
the same candidate by averaging. 

EXPERIMENT RESULTS 

In this section, we evaluate the performance of the 
proposed nodule detection DCNN framework using Free-
Response Receiver Operating Characteristic (FROC) analysis 
[4] on the LUNA16 Challenge. The challenge focuses on 
sensitivities at 0.125, 0.25, 0.5, 1, 2, 4, 8 false positives per 
scan of given nodule detection system. The challenge ranks 
submissions by evaluating average sensitivity of 7 false 
positive rates above. The proposed nodule detection deep 
convolution neural network yields 0.9499 the FROC score.  
The hardware settings for the experiments are GTX Titan-X2 
GPU, Intel E5-1650 v3 CPU and 64GB memory on Ubuntu 
64bits Linux desktop. And Tensorflow is used as our deep 
learning framework.  
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Figure 2: 3D DCNN for false positive reduction, Convolution filters are denoted 

with 'C' in short 


