# DEEP LEARNING BASED CANCER METASTASES DETECTION

DAYONG WANG PHD1

ADITYA KHOSLA PHD<sup>2</sup>

RISHAB GARGEYA<sup>1</sup>

HUMAYUN IRSHAD PHD<sup>1</sup>

ANDREW H BECK MD PHD<sup>1</sup>

<sup>&</sup>lt;sup>1</sup> Department of Pathology, Harvard Medical School and Beth Israel Deaconess Medical Center

<sup>&</sup>lt;sup>2</sup> MIT Computer Science and Artificial Intelligence Laboratory

#### **TASKS**

- Training and Evaluation
  - 110 tumor slides
  - 160 normal slides
  - 130 evaluation slides
- l<sup>st</sup> Task
  - Whole slide level prediction
  - Binary classification problem
- 2<sup>nd</sup> Task
  - Find metastasis location
  - Segmentation problem



#### SYSTEM FRAMEWORK



# SEVERAL ESSENTIAL COMPONENTS

Network architecture

Training set construction

Computing environment

Post-processing for classification and segmentation

# NETWORK ARCHITECTURE DESIGN

- We compared several networks
  - GoogLeNet (Szegedy et al. ILSCV 2014): 98.4%



- VGG16 (Simonyan and Zisserman): 97.9%
- FaceNet (Wang et al. 2015): 96.8%
- AlexNet (Krizhevsky et al. NIPS 2012): 92.1%

- Details of GoogLeNet
  - 27 layers in total
  - ~6 million parameters
  - three loss layers
  - Christian Szegedy et al. Going Deeper with Convolutions



#### TRAINING SET CONSTRUCTION

- Preprocessing
  - Tissue region segmentation (Otsu's method of foreground segmentation)
  - Remove 82% of WSI region on average





#### TRAINING SET CONSTRUCTION

#### • Step 1:

- Randomly extract patches (256 x 256) on the tissue region
  - Tumor slide: 1K positive and 1K negative from each slide
  - Normal slide: 1K negative from each slide
  - ~290K training patches

#### • Step 2:

- Make predictions and construct heatmaps
- Extract additional ~60K training patches from false positive regions
- 290K + 60K = 350K training patches in total

#### PATCH EXTRACTION AT 40X

- We evaluate performance with patch extraction at several magnifications
  - Experimental results indicate that 40x is the best



Example patches of size 256 x 256 with 40x, 20x and 10x magnification Normal Slide, ID: 001

#### DATA AUGMENTATION

• Randomly crop a 224 x 224 sub-region and flip patches horizontally



or



#### **NETWORK TRAINING**

Deep model is trained from scratch using mini-batch SGD



#### **Environment**

- GPU:
  - 2 x NVidia Tesla K80 graphics cards
- CPU:
  - Intel ® Xeon®
     CPU E5-2620 v3
     @ 2.40GHz
  - #cores=12
- · Hard Disk:
  - 4T SSD
- Memory:
  - 64 GB RAM

### TUMOR PROBATILITY HEATMAP GENERATION



### POST-PROCESSING FOR SLIDE-BASED TUMOR CLASSIFICATION

Extracting higher level features from tumor heatmaps



### POST-PROCESSING FOR SLIDE-BASED TUMOR CLASSIFICATION



Top 5 important features, computed using the "regionprops" function in skimage. t is the threshold value

- **Feature 10:** given t=0.5, the longest axis in the largest tumor region
- **Feature 09:** given t=0.5, ratio of pixels in the region to pixels in the total bounding box ("extent")
- Feature 08: eccentricity of the ellipse that has the same second–moments as the region. ("eccentricity")
- **Feature 04:** ratio of tumor region when t=0.9 to the tissue region
- **Feature 05:** given t = 0.5, the area of largest tumor region

### POST-PROCESSING FOR LESION-BASED TUMOR REGION SEGMENTATION

 Train a sensitive model (D-1) for estimation of tumor location (threshold = 0.9)

- Train a more specific model (D-2) for tumor probability estimation
  - ~30K extra training patches extracted from normal area adjacent to tumor region

# LESION-BASED TUMOR REGION SEGMENTATION

Generate the locations using H-1



# LESION-BASED TUMOR REGION SEGMENTATION

Generate the prediction value using H-1 and H-2



#### **CONCLUSIONS**

- We developed a deep learning based framework for metastatic cancer detection in lymph nodes
  - Architecture: Based on GoogLeNet
  - Training: Additional training patches from false positive and tumor adjacent regions
  - Post-processing:
    - Random forest classifier on heatmap-based features for classification task
    - Integration of a more sensitive (for tumor location) and more specific (for tumor probability) model for segmentation task