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Abstract. Evaluating algorithms for the image-based classification of dementia
on the basis of common data and using common metrics is essential for an ob-
jective comparison of different approaches. It is the aim of the Computer-Aided
Diagnosis of Dementia based on structural MRI data (CADDementia) challenge
to address this need by providing the opportunity of objectively evaluating in-
dividual approaches. In this paper, a classification framework is presented, in
which four different sets of features extracted from structural MR images are ex-
amined with respect to their discriminative abilities. These features are based on
volumetric and morphologic parameters, image intensities and patch similarities.
Moreover, a combined feature set is employed to analyse the amount of comple-
mentary information contained in the features. For the three-class classification
problem – Alzheimer’s Disease (AD) vs. Mild Cognitive Impairment (MCI) vs.
Control (CN) – a classification rate on a subset of the ADNI1-2 databases be-
tween 51% and 59% is achieved with all five feature sets. The combined feature
set leveraging the potential of all four methods leads to only a minor improvement
over the individual sets.

1 Introduction

The Computer-Aided Diagnosis of Dementia based on structural MRI data (CADDe-
mentia) challenge [1] is aimed at evaluating different methods for the image-based di-
agnosis of dementia. Held in the course of the MICCAI 2014 conference, the challenge
provides a standardised platform for objectively testing different approaches on a com-
mon set of image data, which allows an objective comparison.
A crucial aspect of the computer-aided diagnosis based on MRI data is the extraction of
features from the images. These features have to be meaningful for the diagnostic pur-
pose, that means they are designed to contain valuable information about the state and
the progression of the disease. In the case of Alzheimer’s disease, for example, features
proposed in the literature range from concrete and well-known clinical biomarkers like
the hippocampal volume [2] or the cortical thickness [3] to abstract parameters derived
directly from the image intensities by manifold learning approaches [4].
In this contribution, we aim at comparing different feature extraction methods that have
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all been shown to be of high potential for the differential diagnosis of Alzheimer’s dis-
ease and related forms of dementia. These features comprise:

– Volumetric features (VOL): A total of 134 distinct brain volumes are automati-
cally segmented (see Sec. 3.1).

– Morphologic features (CORT): Based on the brain segmentations, morphological
features such as cortical thickness and cortical surface measurements are computed
(see Sec. 3.2).

– Manifold-based learning features (MBL): Manifold-based learning is used to
map intensity texture descriptors of all subjects into a d-dimensional space, such
that similarities between the images are maintained. The d coordinates of this space
(or a subset of them) are then considered as features (see Sec. 3.3).

– Patch-based grading features (GRAD): A patch-based approach is employed to
find similar intensity patterns in scans of other subjects. Features are then computed
as the weighted average of the labels associated with similar patches (see Sec. 3.4).

The special focus of this work is on A) comparing the performance of the features on
a set of unseen image data provided by the CADDementia challenge, and B) assessing
the degree of complementary information contained in the feature sets. Therefore, as
well as analysing the four groups of features independently, a joint feature set (ALL) is
tested that combines all available features.
For classification, Random Forests were employed consistently in all experiments as
they have been shown to be powerful in particular for multi-class classification [5] (see
Sec. 4). They were trained on the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
[6] database using the five different feature sets and the classification results were sub-
mitted to the CADDementia challenge.
In Sec. 5, classification results for a 10-fold cross validation on the ADNI database and
for the classification of the 30 training cases hosted by the CADDementia challenge are
additionally provided. These experiments showed that a high performance of all feature
sets for the classification of the Alzheimer’s disease state, with three-class classification
accuracies ranging between 51% and 59% for the cross validation. The intensity based
features MBL and GRAD slightly outperformed the other features. Only a small im-
provement was reached with the combined feature set, which suggests that the amount
of complementary information contained in the features is limited.

2 CADDementia data and common preprocessing

The challenge data is comprised of 30 plus 354 T1-weighted images for training and
testing data respectively. The images were acquired at three different sites at 3T mag-
netic field strength. More details can be found at [1]. Both training and testing data
were preprocessed using the same pipeline. All T1-weighted MR scans with in-place
resolution below 0.5 mm were resampled and their in-plane resolution doubled. The im-
ages were further corrected for potential intensity inhomogeneities employing the N4
algorithm [7]. Brain masks were then calculated for both training and testing images us-
ing pincram [8]. As atlas database for pincram, 64 subjects of the ADNI1 cohort were
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chosen. After visual inspection ≈ 10% of the brain masks for the CADDementia test-
ing dataset did not meet our quality criterion. An updated pincram version was rerun
on these subjects adding 3T scans from the ADNI2 study as well as successfully ex-
tracted subjects from the CADDementia training set to the atlas database. The extended
database lead to an improved segmentation quality sufficient for a further analysis, such
that no manual editing was required. It was observed that scans acquired at EMC Rot-
terdam were particularly challenging to extract.

3 Feature Extraction

In the following we present four approaches to extract biomarkers that have been shown
to have potential for Alzheimer’s disease state classification. The focus is on providing
a brief description of the individual approaches and how they are applied. For further
details we refer to the papers describing the whole brain segmentation approach (VOL,
[9]), the cortical thickness measurement (CORT, [10]), the extraction of intensity fea-
tures (MBL, [11]) and the calculation of patch-based grading values (GRAD, [12]).

3.1 Volumetric features from multi-structure whole brain segmentation (VOL)

Training data To automatically parcellate the provided MR scans into anatomical re-
gions, the 30 brain atlases (excluding repeat scans) provided through the “MICCAI
Grand Challenge on Multi-Atlas Labeling 2012” [13] were employed. This atlas database
consists of 30 T1-weighted MR scans from the OASIS database that were annotated by
expert raters1 into 134 distinct brain regions.

Method description We employed the multi-atlas label propagation method described
in [9]. In this approach, all 30 brain atlases are aligned to an unsegmented subject MRI
using a robust nonrigid registration approach based on multi-level free form deforma-
tions [14–16]. The individual atlas label maps are then transformed to the image space
of the unsegmented image using the calculated transformation and a nearest neighbour
interpolation scheme. The 30 propagated atlas label maps are fused into a consensus
probabilistic segmentation using a local weighting approach. The obtained probabilis-
tic segmentation is further refined using a method that exploits image intensities in an
expectation maximisation framework [9]. For each subject we finally extract 135 volu-
metric features, including background, based on the segmentations.

3.2 Cortical morphology features (CORT)

Training data Measurements of cortical morphology were obtained based on the seg-
mented regions of the cortex. Cortical surface area, curvature and thickness features
were calculated for the whole cortex and its 98 regional subdivisions (in total 591 fea-
tures).

1 provided by Neuromorphometrics, Inc. (http://Neuromorphometrics.com/) under academic
subscription.
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Cortical thickness estimation Cortical thickness was estimated as described in [10].
In this approach, a potential field from the GM-WM to the GM-CSF interface is de-
termined by solving the Laplace’s equation. Voxel-wise thickness was then calculated
as the sum of the voxel’s distance to the WM and to the CSF, following the direction
perpendicular to the potential field. Cortical sulci correction was performed similarly to
[17]. We calculated cortical thickness (mean and standard deviation) for each cortical
region (98+98 features).

Cortical surface measurements Cortical surface meshes were obtained by triangula-
tion of the CGM-WM isosurface of each hemisphere with the marching cubes algorithm
[18]. The surfaces were smoothed with Laplacian smoothing [19] for an even distribu-
tion of the mesh vertices. An example cortical surface is presented in Figure 1.

Fig. 1: Cortical surface of the CGM-WM interface with overlaid segmentation.

Surface area and curvature measures of the cortex were computed from the meshes. We
adopted a number of area-independent curvature measures from [20] with T-normali-
sation that are not sensitive to the surface area. The surface measures included in this
study were: surface area in the whole cortex and each region (1+98), relative surface
area (98), mean curvature L2 norm (1+98) and Gaussian curvature L2 norm (1+98).

3.3 Manifold-based learning for multi-level variable selection (MBL)

Training data Data used was obtained from the ADNI database. In this work, a subset
of 292 ADNI-1 subjects with baseline 1.5T MR images and that did not have 1.5T
MR images available at 12 or 24 month follow-up, were used for training a multilevel
variable selection scheme based on sparsity. The remaining 1.5T and 3T ADNI-1, -
GO and -2 baseline images (as of November 2013) were used to evaluate and tune the
proposed framework. In total 1701 images were used, from which 292 were used for
multilevel variable selection and 1409 for evaluation and tuning.

Multilevel relevant variable selection The goal of variable selection is to reduce the
amount of input variables to those that are relevant for a specific task. In this work a
sparse regression was used in a similar fashion as the method described in [11] to select
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relevant variables. Here, independent variables are the MR image intensities, while the
mini mental state examination (MMSE) score acts as dependent variable [11]. Further-
more, as disease specific imaging characteristics might manifest at different alignment
levels, each of the N subjects has associated R images that have been created by align-
ing the original scan to the MNI152 template at R different levels using [15]. A matrix
X is built, where each column represents a location in MNI space at a certain alignment
level. Each row in matrix X represents a subject n ∈ N via concatenating its vectorised
MR images at multiple levels r ∈ R. The algorithm then selects a subset of D variables
from X, that correspond to column indices of X. This yields a 4D mask, where the first
three dimensions are coordinates in MNI space and the fourth is the alignment level of
the image to the template.

Local binary patterns MR images acquired using different acquisition protocols have
different intensity appearance and thus cannot be easily combined into a single frame-
work. In this work we extract local binary patterns (LBP) [21] around the 26-connected
neighbourhood of each selected voxel and encode them as binary vectors. This trans-
forms MR intensity features to an augmented binary space where the images lie in the
same space and thus can be combined, assuming that the original acquisitions protocols
are reasonably similar (e.g. both are T1-weighted).

Dimensionality reduction The aim of this work is to produce a three-class classi-
fier. For this purpose, it was found in [11] that the learned 4D mask is still relatively
high-dimensional and that reducing the dimensionality generally improves classifica-
tion results. In this work principal component analysis (PCA) [22] was used to reduce
the dimensionality of the data.

3.4 Patch-based disease grading features (GRAD)

Training data ADNI baseline scans of 629 subjects (233 CN, 231 MCI, 165 AD) ac-
quired at 3T and 30 training images from the challenge were utilised as training dataset.
For each image, 150 grading features were calculated for classification. Then, an opti-
mised classifier was trained on the training dataset and used to predict the class labels
of the testing images from the challenge.

Method description After preprocessing, non-rigid registration, based on B-spline
free-form deformation [15] with a final control point spacing of 5mm, was performed
to align all images to the MNI152 template space. The intensity was normalised be-
tween each image and the template using the approach proposed in [23]. Then, the
sparse regression method proposed in [24] was used to calculate a probability map for
selecting patches. Finally, 150 patches with the highest probabilities are extracted from
each image for calculating grading features.
A patch-based approach was proposed in [25] to calculate grading features for clas-
sification of AD. Our method is an extension of this method by introducing sparse
representation techniques. To calculate a grading value for each target patch pt , corre-
sponding patches in the training images are extracted to form a training patch library
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PL. The patch library PL typically contains thousands of training patches. The relation-
ship between the target patch pt and the patches in the training library PL is modelled
by a weighting function in [25]. In our work, the Elastic Net sparse regression model
[12] is used to model the relationship between the target patch and the training patches.
Since the pathological status of the training patches are known, we can propagate the
pathological status to the target patch by using the patch relationship. The grading value
of the target patch pt can then be estimated as:

ât = min
at

1
2 ‖pt −PLat‖2

2 +λ1‖at‖1 +
λ2
2 ‖at‖2

2

gt =
∑

N
j=1 ât ( j)s j

∑
N
j=1 ât ( j)

(1)

where ât are the coding coefficients for the target patch pt . Most of the coefficients in
ât are zero due to the sparsity constraint. If the coefficient in ât is not zero, it indicates
that the corresponding training patch has been selected to propagate their pathological
information to the target patch. N is the number of the training patches in the patch
library PL. The CN and AD training groups were selected from the training dataset to
propagate pathological status to the target image as suggested in [25]. The pathological
status of the training patch PL( j) is denoted as s j. If the training patch is extracted from
CN subjects, s j is set to 1. s j = −1 is used for patches extracted from AD subjects.
Finally, a grading value gt can be calculated for each target patch pt . Since 150 patches
are extracted from each image, 150 grading features are calculated for classification.

4 Classification based on Random Forests

For all classification experiments, we applied the random forests algorithm [26] imple-
mented in scitkit-learn ([27]; http://scikit-learn.org/). This method is able to predict both
binary labels and class probabilities, and can be directly applied for three-class classifi-
cation. As in the originally proposed algorithm, no maximum tree depth was specified,
and a bootstrap sample of the training data was passed to each tree. Tree nodes were
split based on an entropy criterion, and 100 trees were included in each forest. The num-
ber of features randomly sampled at each tree node was set to

√
n for all experiments,

following the recommendation of Liaw and Wiener [28].

5 Results

5.1 Training data

Features generated by different methods seek to model differences in subgroups in a
distinct way and thus may hold complementary information between each other. In or-
der to asses this, a subset of subjects that overlap for all of the proposed methods was
used for training. Features generated by those methods were combined into a single
classification framework, where if complementary information exists, overall classifi-
cation results would be expected to improve. In total, 734 subjects from the ADNI1-2
datasets where included in this analysis. See Table 1 for the demographics of the data.
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Table 1: Subject groups mean age, sample size, MMSE scores, gender, CDR scores and
Magnetic strength from ADNI1-2.

N Age MMSE Men (#) CDR 1.5T (3T)

AD 170 74.77±7.62 23.12±2.06 46% (78) 0.79±0.27 110 (80)
MCI 288 73.79±7.47 27.28±1.79 55% (158) 0.50±0.00 185 (103)
CN 276 74.75±5.82 29.07±1.16 47% (131) 0.00±0.00 156 (120)

We performed classification experiments in two variations. Firstly, we performed a 10-
fold cross validation approach within this subset of the ADNI database. Secondly, we
trained the random forest classifier using this ADNI subset, and classified the provided
CADDementia training set. The second experiment is the same setup that was used for
calculating the submitted results based on the CADDementia testing data.
For each classification task we employed a random forest classifier that was trained on
five subsets of the available features. We used features provided by each of the four in-
dividual methods (VOL, CORT, MBL, GRAD) as presented in 3.1-3.4. We furthermore
combined all available features (ALL={VOL, CORT, MBL, GRAD}) provided by the
presented methods to investigate whether they provide complementary information. We
did not use available meta information such as age, field strength and gender.
The mean accuracies obtained in the ADNI cross-validation experiment are provided in
Table 2. The mean accuracies obtained by 10 classification runs for the CADDementia
training data are summarised in Table 3.
When using ALL features, we further investigated which features were most informa-
tive by extracting feature importances from the random forest classifier trained for the
three-class classification task. We found that the first manifold coordinate of the MBL
features was most important. Otherwise the top 50 features were, except left and right
Amygdala volume (#18, #24), constituted by exclusively grading features provided by
GRAD.

Table 2: Overview of the classification results for the 10-fold cross validation on the
subset of the ADNI1-2 cohort. Mean classification accuracy (± SD) based on 10-fold
cross validation.

Type # Feat. AD vs. CN AD vs. MCI MCI vs. HC AD vs. MCI vs. HC

VOL 135 0.83±0.05 0.68±0.04 0.67±0.05 0.54±0.04
CORT 591 0.80±0.05 0.65±0.06 0.63±0.04 0.51±0.05
MBL 20 0.89±0.05 0.67±0.07 0.70±0.05 0.58±0.03
GRAD 150 0.86±0.04 0.67±0.04 0.69±0.04 0.56±0.04
ALL 896 0.87±0.03 0.68±0.04 0.72±0.05 0.59±0.04
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Table 3: Overview of the classification results obtained on CADDementia training data.
Mean classification accuracy (± SD) based on 10 classification runs.

Type # Feat. AD vs. CN AD vs. MCI MCI vs. HC AD vs. MCI vs. HC

VOL 135 0.86±0.03 0.73±0.05 0.68±0.05 0.56±0.08
CORT 591 0.91±0.05 0.67±0.09 0.65±0.05 0.58±0.07
MBL 20 0.94±0.02 0.62±0.04 0.75±0.04 0.66±0.01
GRAD 150 0.88±0.03 0.75±0.06 0.76±0.03 0.67±0.05
ALL 896 0.92±0.02 0.78±0.05 0.75±0.04 0.68±0.05

5.2 Computation times

The approximate computation times per subject are summarised in Table 4. None of the
presented methods requires manual interaction.

Table 4: Overview of the approximate computation times per subject.

Task Runtime Implementation Automatic

N4 bias correction < 30 minutes single core yes
pincram brain extraction < 1 hour parallel yes*
registration of the 30 atlases (VOL) < 2 hours parallel yes
atlas fusion (VOL) < 20 minutes single core yes
cortical thickness (CORT) < 15 minutes single core yes
variable selection, 292 images (MBL) < 2.5 hours single core yes
local binary patterns (MBL) < 1 second single core yes
dimensionality reduction, ∼1800 subjects (MBL) < 10 seconds parallel yes
Grading feature extraction (GRAD) < 5 minutes single core yes
classification < 1 second single core yes

*(manual quality control)

6 Discussion

We have presented four independent approaches for extracting both structural and in-
tensity based biomarkers from MR images with the goal of Alzheimer’s disease state
classification. Cross-validation experiments on the ADNI database suggest that the vol-
umetric features (VOL) and in particular the intensity (MBL) and grading features
(GRAD) are competitive to published state-of-the-art classification results. We have
found that combining these features by training a single random forest for all features
jointly seems to have no great impact on the classification performance. This finding
suggests that the presented biomarkers provide little complementary information, which
was unexpected but indicates the difficulty of an accurate three-way classification on
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the ADNI database. Classification results on the training data provided through the
CADDementia challenge were substantially higher than those obtained on the ADNI
database. While this finding is, due to the small sample size of the training dataset, not
definitive it is highly interesting as it suggests that the subjects in the challenge data
show a clearer group separation than the ADNI cohort.
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masks and calculated the multi-class whole brain segmentations. AM and CL calcu-
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