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Abstract. A comprehensive framework for the diagnosis of dementia
diseases using T1-weighted magmatic resonance imaging (MRI) of the
brain is proposed. The analysis framework consists of two main stages:
brain extraction and shape analysis and diagnosis. First, the brain tissue
(i.e., white matter, gray matter) is extracted by following a procedure
like most conventional approaches. Namely, the T1-weighted MR brain
images and desired maps of regions (brain and non-brain) are modeled by
a joint Markov-Gibbs random field (MGRF) model of independent im-
age signals and interdependent region labels. The proposed joint MGRF
model accounts for the following three descriptors: i) a first-order visual
appearance descriptor that closely approximate the empirical distribu-
tion of signal intensity using sign alternate Gaussian models, ii) a 3D
probabilistic shape prior that is learned using a subset of 3D co-aligned
training T1-weighted MR brain images, and iii) a 3D spatially invariant
homogeneity descriptor that is modeled by a second-order translation
and rotation invariant MGRF of 3D T1-weighted MR brain region la-
bels with analytically estimated potentials. Secondly, a shape analysis
step is performed by extracting different brain features that are derived
from the variability of the extracted brain using a spherical harmonic
(SPHARM) analysis. We describe the brain shape complexity with two
new shape indexes, the error in SPHARM reconstruction and the surface
complexity. Then, a K-nearest neighbor classifier is used to discriminate
between Alzheimer’s disease (AD), mild cognitive impairment (MCI),
and controls subjects.
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1 Introduction

Dementia brain diseases (e.g., Alzheimer, vascular dementia) are among the most
interesting and challenging research areas in modern neuroscience. Alzheimer’s
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disease (AD) is the most common cause of a progressive dementia that accounts
for 60-80% percent of cases [1]. The AD is characterized by the decline in men-
tal ability which severely affects the thinking and social abilities interfere of
the adults in the daily life [1]. Therefore, diagnosis of dementia diseases is of
great important to institute appropriate therapies. In this paper, we propose
a computer-aided diagnostic (CAD) system of dementia using structural T1-
weighted MRI data of the brain. Instead of examining the volumetric changes in
individual brain structures, the proposed CAD system attempts to analyze and
quantify differences between the whole 3D brain shapes for AD, mild cognitive
impairment (MCI), and controls subjects in order to discriminate between them
more accurately.

Developing CAD system for the clinical diagnosis of dementia diseases es-
sentially requires accurate delineation of the brain tissue, i.e., white and grey
matters [2]. Thus, the first step of our framework performs skull stripping and
brain segmentation. The proposed brain segmentation is based on the integration
of statistical approaches (a probabilistic shape prior, first-order intensity model,
and second-order appearance model) that are integrated into a two-level joint
Markov-Gibbs random field (MGRF) model of T1-MR brain images. Following
brain segmentation, we generate a 3D mesh model of a manifold of the brain sur-
face, and after mapping this to a unit sphere we approximate the original shape
using spherical harmonic (SPHARM) analysis. We then use the SPHARM re-
construction error and surface complexity of the manifold as indexes to describe
the overall complexity of the brain shape. These features are augmented into a
k-nearest neighbor classifier to distinguish between AD, MCI, and control sub-
jects. Details of the proposed framework are described below.

2 Brain Segmentation using Joint MGRF Model

Let Q = {0, . . . , Q − 1} and L = {1, . . . , L} denote sets of gray levels q and
region labels L, respectively. Let R denote a 3D arithmetic (x, y, z)-lattice that
supports a given grayscale image g : R → Q to be segmented and its goal labled
region map m : R → L. The 3D T1-weighted MR brain images, g, being co-
aligned to the 3D training data, and its map, m, are described with the following
joint probability model

P (g,m) = P (g|m)P (m) (1)

that combines a 3D MGRF, P (m), of region labels with the shape prior of the
brain and a conditionally independent random field. The joint conditional distri-
bution of image intensities given the map is P (g|m) =

∏
(x,y,z)∈R p(gx,y,z|mx,y,z).

The map model P (m) = Psp(m)Ph(m) has two parts: (i) a shape prior proba-
bility Psp(m), and (ii) a second-order MGRF model Ph(m) of a spatially homo-
geneous region map m for the image g, which is aligned to the training set. In
this work, we focus on accurate identification of the spatial interaction between
the brain voxels (P (m)) and the 1st-order visual appearance descriptor for the
brain tissues (P (g|m)) as shown in Fig. 1.
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Fig. 1. Illustration of the proposed joint Markov-Gibbs model of T1-weighted MR
brain images.

2.1 Shape Model

To enhance the segmentation accuracy, expected shapes of the brain is con-
strained with a probabilistic shape prior. To construct the shape prior, a train-
ing set of 3D MR brain images collected for different subjects are co-aligned by
3D affine transformations with 12 degrees of freedom in a way that maximizes
their mutual information (MI) [3]. The shape prior is a spatially variant inde-
pendent random field of region labels Psp(m) =

∏
(x,y,z)∈R psp:x,y,z(mx,y,z) for

the co-aligned, manually segmented data sets, specified by voxel-wise empirical
probabilities for the brain and non-brain labels (psp:x,y,z(l), l ∈ L.

For the training phase, we use 30 data sets that were first segmented using the
FMRIB’s automated segmentation tool [4] and then corrected manually by MR
experts. Then, the segmented images are used to create the probabilistic map
of the brain. During the testing phase, each data to be segmented is globally
registered with the set of training data that have been used to create the prior
shape model of the brain.

2.2 1st-Order Visual Appearance Descriptor

In addition to the learned prior shape descriptor, we implement a 1st-order vi-
sual appearance descriptor of the MR images. During segmentation of a data set,
this visual appearance descriptor is roughly taken into account by approximat-
ing the 1D empirical marginal gray level distributions of the T1-weighted MR
brain images with a linear combinations of discrete Gaussians (LCDG) [5–7].
This LCDG model is a modified version of our previous linear combination of
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continuous Gaussian probabilistic model [8, 9]. This approximation adapts the
segmentation to the changing appearance, such as non-linear intensity variations
caused by patient weight and data acquisition systems (e.g. scanner types and
scanning parameters). The LCDG models the empirical distribution the brain
(white matter and grey matter) and non-brain (CSF and other brain structures)
tissues label more accurately than a conventional mixture of only positive Gaus-
sians. This yields a better initial region map that is formed by the voxel-wise
classification of the gray values in the images.

Let F =
(
f(q) : q ∈ Q;

∑
q∈Q f(q) = 1

)
be an empirical marginal probability

distribution of gray levels, q, for the 3D T1-weighted MR brain image, g. Each
distribution has a known number, L, of dominant modes related to the regions of
interest (in our case, L = 2). To segment an image by separating these individual
dominant modes, the individual gray level distributions that are associated with
each mode must be estimated from F. Unlike conventional modeling with a
mixture of Gaussians [10], or another simple distribution type [11] where there
is only one distribution per dominant mode, we approximate Fj much more
closely using the LCDG. The LCDG is partitioned for the whole image into
multiple LCDG submodels that each relate to a unique dominant mode (in our
case brain and non-brain structures). The discrete Gaussian (DG) components
Ψγ = (ψ(q|γ) : q ∈ Q) then integrate a continuous Gaussian with parameters
γ = (µ, σ2); where µ and σ2 are the mean and the variance, respectively, over
successive gray level intervals. The LCDG with Cp positive and Cn negative
components, such that Cp ≥ L, is defined as follows [5, 8]:

Pw,Θ(q) =

Cp∑
r=1

wp,rψ(q|γp,r)−
Cn∑
t=1

wn,tψ(q|γn,t) (2)

with the non-negative weightsw = [wp,., wn,.] such that
∑Cp

r=1 wp,r−
∑Cn

t=1 wn,t =
1. In order to precisely estimate the parameters of the LCDG model, including
the numbers of positive and negative components, EM-based techniques, namely
those introduced in [5] for approximation of a probability density model when
using a linear combination of Gaussians, have been adapted to this LCDG model.

2.3 3D Spatial Interaction MGRF Model

In order to perform a more accurate segmentation, spatially homogeneous 3D
pair-wise interactions between the region labels are additionally incorporated in
the model. These interactions are calculated using popular Potts model (i.e., an
MGRF with the nearest 26-neighbors of the voxels as demonstrated in Fig. 2),
and analytic bi-valued Gibbs potentials, that depend only on whether the near-
est pairs of labels are equal or not. Let feq(m) denote the relative frequency of
equal labels in the neighboring voxel pairs ((x, y, z), (x+ ξ, y + η, z + ζ)) ∈ R2;
(ξ, η, ζ) ∈ (±1, 0, 0), (0,±1, 0), (±1,±1, 0),±1, 0,±1), (0,±1,±1), (±1,±1,±1).
The initial region map results in an approximation with the following analytical
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maximum likelihood estimates of the potentials [5, 12]:

veq = −vne ≈ 2feq(m)− 1 (3)

that allow for computing the voxel-wise probabilities ph:x,y,z(mx,y,z = l) of each
label l ∈ L.

One of the advantages of the proposed approach is that it addresses the in-
homogeneities in the transition regions of different brain structures. At these
transition locations, there is typically a spatial inhomogeneity in the signal in-
tensity [13]. Importantly, in addition to signal intensity, our approach uses shape
and spatial interaction components. This provides additional information that
aids in overcoming the variability that often results when solely taking signal
intensities into account. The proposed step-wise segmentation algorithm is sum-
marized in Algorithm 1 and Fig. 3.

Algorithm 1: Key Steps for the Proposed
Segmentation Approach

1. Remove the skull from T1-weighted MR brain im-
ages using the approach proposed in [14].

2. Approximate the marginal intensity distribution
P (g) of the T1-weighted MR brain image using
LCDG with two dominant modes.

3. Form an initial region map m using the marginal
estimated density and prior shapes.

4. Find the Gibbs potentials for the MGRF model
from the initial map using Eq. 3.

5. Improve the region mapm using voxel-wise Bayes
classifier. Fig. 2. Illustration of the

proposed 3D neighborhood
system.

3 Brain Shape Analysis and Dementia Diagnosis

Following brain segmentation, a 3D mesh model of the brain surface is mapped
to a unit sphere, and approximated with a linear combination of spherical Hhar-
monics (SPHARM). The number of SPHARMs used in reconstruction yields a
desired approximation accuracy that can be used as a new shape index to de-
scribe the complexity of the brain shape. Then, a K-nearest classifier separates
the AD, MCI, and controls subjects by their shape indexes.

Spectral SPHARM analysis [15, 16] considers a set of 3D surface data as a
linear combination of specific basis functions. We perform a weighted-SPHARM
analysis similar to the approach that was used in our previous work on autism [17].
The surface manifold of the brain is approximated using a Delaunay triangulated
3D mesh (see Fig. 4), having 50,000 nodes to efficiently describe the brain, con-
structed using an algorithm based on the work of Fang and Boas [18]. Secondly,
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Fig. 3. Segmentation results of the proposed segmentation approach. Segmentation
performed in 3D; results projected onto 2D axial (A), coronal (C), and sagittal (S)
planes for visualization. (a) 2D profile of the original T1-weighted MR brain images,
(b) MR brain data after removing the skull [14], (c) initial segmentation results using
1st-order visual appearance and prior shape models, and (d) final segmentation results
using the proposed three models. Note that the brain (white and grey matters) and
non-brain tissues are shown green, and red colors, respectively.

the brain mesh for each subject is mapped to a unit sphere utilizing a novel
mapping approach [17], called “Attraction-Repulsion” that calls for all the mesh
nodes to meet two conditions: (i) the unit distance of each node from the brain
center, and (ii) an equal distance of each node from all of its nearest neighbors.

The brain mesh is then approximated using a linear combination of spherical
harmonics. In general, the theory is that lower-order harmonics are sufficient
to represent the more generic shape information of the brain. The higher-order
harmonics contain the fine details of the brain and help to rebuild the nuanced
gyrifications of the brain shape. A SPHARM analysis is performed by solving
an isotropic heat equation for the brain surface on the unit sphere [16, 17].

Let S : M → U denote the mapping of a brain mesh M to the unit sphere
U. Each node P = (x, y, z) ∈ M mapped to the spherical position u = S(P) is
represented by the spherical coordinates u = (sin θ cosφ, sin θ sinφ, cos θ) where
θ ∈ [0, π] and φ ∈ [0, 2π) are the polar and azimuth angles, respectively. The SH
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Fig. 4. Illustrating the process of generating a high-resolution 3D mesh for the brain
surface from a stack of successive segmented 2D T1-weighted MR image slices.

Yαβ of degree α and order β is defined as [19]:

Yαβ =


cαβG

|β|
α cos θ sin(|β|φ) −α ≤ β ≤ −1

cαβ√
2
G

|β|
α cos θ β = 0

cαβG
|β|
α cos θ cos(|β|φ) 1 ≤ β ≤ α

(4)

where cαβ =
(

2α+1
2π

(α−|β|)!
(α+|β|)!

) 1
2

and G
|β|
α is the associated Legendre polynomial of

degree α and order β. For the fixed α, the polynomials Gβ
α are orthogonal over

the range [−1, 1]. As shown in [19], the Legendre polynomials are an effective
means of calculating SHs, and this is the main motivation behind their use in
this work.

The brain can be simply reconstructed from the SPHARMs of Eq. (4). In
the case of a SPHARM expansion, the standard least-square fitting does suffers
from some inaccuracy with the complexity of the 3D shape of the brain, and
may inadvertently alter some information that can be used to discriminate be-
tween AD, MCI, and control individuals. To address this problem, we utilize an
iterative residual fitting by Shen et al. [20] that improves the approximations of
the 3D gyrifications on the brain.

3.1 Quantitative brain shape analysis

To perform a quantitative analysis of the brain shape we propose two techniques
for measuring the complexity of the brain: SPHARM reconstruction error and
surface complexity.
SPHARM reconstruction error: Due to the unit sphere mapping, the origi-
nal brain mesh for each subject is inherently aligned with the SPHARM approx-
imation. As the brain is reconstructed using the methods proposed in Section 3
we can measure the error (using Euclidean distance) between the original brain
mesh nodes and the SPHARM approximated brain mesh nodes. This error gen-
erates a reconstruction error curve that is unique to each subject. Unlike our
previous work [17] that narrowly examined the first few interactions between
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individual reconstructions, we propose that examining the area under each of
these curves will serve as a more robust metric for the brain.

Surface complexity: We also propose a new metric for examining the com-
plexity of the brain using the SPHARM coefficients. For a unit sphere f , having
a SPHARM expansion as shown in Eq. (4), we compute the surface complexity
metric. S(f) is defined as:

S(f) =
∑∞

N=0 ε
2
N

=
∑∞

N=0NB
2
N

(5)

where N is the number of harmonics, and B are the previously calculated
SPHARM coefficients. The squared residual ε2N is defined as:

ε2N = ∥f − fN∥2
= ∥

∑∞
n=N+1

∑n
m=−n bnmY

m
n ∥2

=
∑∞

n=N+1

∑n
m=−n |bnm|2

=
∑∞

n=N+1B
2
n

(6)

For use in 3D SPHARM analysis there are three sets of coefficients for each
direction, x, y and z. Therefore the surface complexity is expanded from Eq. 6
to be defined as:

S(f) =
∑∞

N=0 N(B2
N,x+B2

N,y+B2
N,z)

∥fx∥2+∥fy∥2+∥fz∥2 (7)

This metric generates a unique curve for each subject similar to the SPHARM
reconstruction error curves. Some of the advantages to this calculation are that
it relies solely on the coefficients, making it a self contained metric, and it serves
to represent the average degree of SPHARM expansion. It is also a convergent
metric, and can be computed over the range of harmonics of interest. The surface
complexity is a second unique metric for examining the brain.

Based on previous studies [21–23] of the gyral index, we hypothesize that the
complexity of the brain for control subjects are lower than MCI and AD subjects,
with AD being the highest complexity. In terms of SPHARM, this means that
less spherical harmonics are requires to accurately approximate the brain gyri-
fications. We therefore hypothesize that the overall area under the SPHARM
reconstruction error curve and the surface complexity curve will be lower for
control individuals. We propose the novel use of the SPHARM reconstruction
error and surface complexity curves to identify AD, MCI and control subjects.

Our framework has been evaluated on 384 subjects, 30 of which were provided
to us by the CADDementia challenge organizers for training, and the other 354
subjects were used for testing. The test data were collected from multicenter
clinical-representative T1-weighted MRI data of patients with AD, mild MCI
and healthy controls. To distinguish between the AD, MCI, and control subjects,
we used a K-nearest neighbor classifier learning statistical characteristics of the
extracted indexes. To build the classifier, we used 8% of the data sets for training
for testing.
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