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Abstract. Structural MRI is an important imaging biomarker in Alzheimer’s 

disease as the cerebral atrophy has been shown to closely correlate with cogni-

tive symptoms. Recognizing this, numerous methods have been developed for 

quantifying the disease related atrophy from MRI over the past decades. Special 

effort has been dedicated to separate AD related modifications from normal ag-

ing for the purpose of early detection and prediction. Several groups have re-

ported promising results using automatic methods; however, it is very difficult 

to compare these methods due to varying cohorts and different validation 

frameworks. To address this issue, the public challenge on Computer-Aided Di-

agnosis of Dementia based on structural MRI data (CADDementia) was pro-

posed. The challenge calls for accurate classification of 354 MRI scans collect-

ed among AD patients, subjects with mild cognitive impairment and cognitively 

normal control. The true diagnosis is hidden from the participating groups, thus 

making the validation truly objective. This paper describes our proposed meth-

od to automatically classify the challenge data along with a validation on 30 

scans with known diagnosis also provided for the challenge. 

1 Introduction 

Neuronal injury is an important component of the pathophysiological process in-

volved in Alzheimer’s disease (AD). The cerebral atrophy resulting from the progres-

sive neurodegeneration can be measured using magnetic resonance imaging (MRI) 

and is currently among the most important biomarkers of AD [1]. Optimizing such 

MRI-based biomarkers for detection and prediction of AD may have a significant 

impact on early diagnosis of patients as well as being valuable tools when designing 

therapeutic studies of individuals at risk of AD to prevent or alter the progression of 

the disease. 

Hippocampal atrophy has long been recognized as an early feature of the degenera-

tive process involved in AD [2]. Reductions in hippocampal volume appear to be 

correlated to early memory decline [3]. While sensitive to first stage of AD, hippo-

campal degeneration is involved in other dementias, such as vascular dementia [4], 

and is known to be part of non-pathological brain aging [5]. Thus, volumetric meas-



urements of the hippocampus (HC) might be limited in their ability to predict the 

progression of AD [6-9]. Evidence suggests that the nature of degeneration in the HC 

and surrounding structures, such as the entorhinal cortex (ERC) and parahippocampal 

gyrus, is different in AD compared to other dementias and different from the changes 

occurring during normal aging [10]. We recently obtained results that support this 

finding since we showed that AD detection could be improved by considering the 

structural composition of the HC and its surrounding structures in the medial temporal 

lobe [8]. These results were obtained using a novel concept of measuring structural 

similarities, comparing the anatomy of a test subject to a library of AD patients and 

cognitive normal (CN) subjects. 

Studies have shown that, apart from hippocampal and medial temporal lobe (MTL) 

atrophy, AD has a characteristic neocortical atrophy pattern [11, 12]. Cortical thin-

ning of temporal and parietal lobe regions, the posterior cingulate and the precuneus 

seem to be involved at early stages of the disease [13]. In the advanced stages of the 

disease, atrophy spreads to almost the entire cortex sparing only the sensory-motor 

and visual cortex [14]. Recently, we showed [15] that if cortical thickness is measured 

in a consistent manner, patterns of cortical thinning can predict conversion to AD 

among mild cognitive impaired (MCI) subjects with higher accuracy. 

In the current challenge the aim is to classify morphological MRI scans into the 

classes: AD, MCI and CN. For this purpose we propose to combine measurements of 

structural pathological patterns, measured by analyzing morphological alterations in 

key structures of the MTL with degenerative patterns of the neocortex, measured by 

cortical thickness. 

2 Methods 

2.1 Image data 

Data used in the preparation of this article were obtained from the ADNI database 

(http://adni.loni.usc.edu/) and from the public challenge on Computer-Aided Diagno-

sis of Dementia based on structural MRI data (CADDementia, 

http://caddementia.grand-challenge.org/). The ADNI database contains 1.5T and 3.0T 

T1w MRI scans for AD, MCI, and CN at several time points. For this study we used 

cohorts with 1.5T scans from the ADNI1 study and separate cohorts with 3.0T images 

from the ADNI2 study (see Table 1 for cohort statistics). The CADDementia data 

consist exclusively of 3.0T T1w MRI scans from three different sites in Europe. It 

should be noted that scanner equipment and protocols are not harmonized between the 

sites, which gives rise to additional variation in the data. In total 384 scans are provid-

ed of which 30 scans have known labels (Table 1). The remaining 354 scans are used 

for evaluating the proposed classification methods in a completely blinded fashion. 

The authors do not have access to the diagnostic labels behind the test scans. 

 

http://adni.loni.usc.edu/


Table 1. Demographics of the datasets used in the analyses. 

Dataset N (females) Age±sd 

ADNI1 AD 181 (88) 75.3±7.5 

ADNI1 MCI 381 (139) 74.8±7.4 

ADNI1 CN 222 (105) 75.9±5.0 

ADNI2 AD 48 (16) 75.6±8.8 

ADNI2 MCI 183 (69) 71.7±7.6 

ADNI2 CN 73 (36) 75.6±6.2 

CAD AD 9 (6) 66.1±5.2 

CAD MCI 9 (4) 68.0±8.5 

CAD CN 12 (3) 62.3±6.3 

CAD test set 354 (141) 65.1±7.8 

2.2 Image preprocessing 

All images were processed using a fully automatic pipeline [16]. Images were de-

noised [17] using a Rician-adapted noise estimation [18], bias field corrected [19], 

and registered to MNI space using a 12 parameter affine transformation [20]. To ena-

ble robust registrations we used as registration target a population-specific template 

derived from the ADNI1 database constructed using a series of linear and non-linear 

registrations as described in [21]. The custom template was created from 50 AD pa-

tients and 50 CN subjects randomly selected. This template better reflects the anato-

my of ADNI data compared to the conventional ICBM template build from young 

healthy adults. Image intensities were normalized to match the intensity profile of the 

template [22], and finally the images were skull stripped using BEaST [23]. 

2.3 Hippocampus and entorhinal cortex  

Structural features of the hippocampal complex were estimated using SNIPE 

(Scoring by Nonlocal Image Patch Estimator) method [8, 24]. In this technique, the 

local structural information surrounding each voxel (i.e., 3D patch) of a test subject is 

compared to those in a training library of MRI datasets from ADNI1 and ADNI2 AD 

and CN subjects with segmentation of the considered structures (HC and ERC). In 

short, a small patch of MRI data around each voxel (e.g., 7x7x7 voxel patches) from 

the test subject is compared to the training library with the goal to find similar patch-

es. The patch similarity is used to compute a weight for the match and used to deter-

mine two type of information. First, the weights are used to perform segmentation of 

both considered structures using label fusion strategy [25]. Second, the weights are 

used to obtain grading values reflecting the proximity of the current patch to both 

training populations (e.g., CN and AD) (see [24] for more details). As proposed in 

[24], the 50 closest subjects were first selected from each training population (i.e., 50 



AD
1
 and 50 CN) using SSD over an initialization mask. Then, the grading maps and 

the segmentations of the considered structures were obtained simultaneously using 

SNIPE. The ADNI1 and ADNI2 data were graded in a leave-one-out fashion, while 

the CADDementia data were graded using the entire ADNI1 and ADNI2 library. Fi-

nally, the 8 SNIPE-based features extracted were the average grading value over the 

left and right HC and ERC and the volume of the same four structures. Volumes were 

calculated in normalized space (MNI space). 

2.4 Neocortex 

Cortical thickness was calculated using FACE (Fast Accurate Cortex Extraction) 

[26-28] and mapped to the cortical surface of the population-specific average non-

linear anatomical template [21] using an iterative, feature-based algorithm [29]. MCI 

and CN subjects were used to generate a statistical map of group differences in corti-

cal thickness. From this t-map, cortical thickness features were derived with the pro-

cedure described in [15] using the proportion of the cortical surface with the 15% 

largest t-values corresponding to a threshold of t=4.3 and t=1.0 for ADNI1 and 

ADNI2 respectively (see Figure 1). In brief, candidate ROIs were calculated using a 

multi-seed constrained surface based region growing algorithm initialized at local 

maxima of the 15% t-map. In [15] we found a cortical area of 10-15% to be suitable 

for searching for candidate ROIs. We used MCI/CN contrast to generate cortical fea-

tures as opposed to the more conventional AD/CN contrast. This was to enable sensi-

tivity to the three-way classification problem, acknowledging that the MCI classifica-

tion is the most difficult task. A total of 90 cortical thickness ROIs were identified 

this way using ADNI1 data and 87 using ADNI2 (see Figure 2). Neocortical features 

comprised the mean cortical thickness within each of these ROIs measured in subject 

native space. 

2.5 Classification 

We used multinomial regression with lasso and L1/L2 elasticnet regularization for 

the classification. We applied the GLMNET matlab implementation for the purpose 

(http://www.stanford.edu/~hastie/glmnet_matlab/). During experiments we used 

ADNI1 or ADNI2 as training datasets. The proposed classification framework was 

based on ensemble learning approach [30]. In order to create the ensemble we used an 

iterative approach. For each iteration the following steps were performed:  

 

1. Age correction based on the CN ADNI training population  

As in [31], for each feature we estimated the age-related effect on the CN pop-

ulation using linear regression. The features for all the considered groups 

(ADNI and CAD groups) were then corrected using the estimated linear re-

gression coefficients. 

                                                           
1  For ADNI2 only 48 AD images were used in the segmentation and grading process.  

http://www.stanford.edu/~hastie/glmnet_matlab/


2. Under-sampling and Over-sampling of the ADNI training dataset 

In presence of imbalanced population sizes, the evaluation of the performance 

of classification algorithms might be biased [32]. Therefore, in this study, we 

used two different strategies to compensate for this bias. We first randomly 

under-sample majority classes (i.e., CN and MCI) to obtain similar number of 

subjects for the 3 classes. Then we used SMOTE (Synthetic Minority Over-

sampling Technique) to increase the number of samples in each classes. 

SMOTE creates new synthetic samples by performing interpolation of the 

nearby neighbors in the feature space 

 

3. Grid search for optimal classifier parameters 

In order to estimate the optimal parameters of the classifier, we performed a 

grid search using the CAD training dataset. When the accuracy of the classifi-

cation was balanced between the 3 classes of CAD training dataset and higher 

than a given threshold, the model was applied on the CAD test dataset and the 

prediction (i.e., the 3 a posteriori probabilities for all the subjects) was stored 

in the model ensemble. Step 2 and 3 are iteratively performed until 25 good 

models were found. 

 

4. Ensemble learning classification 

Finally, at the end of the iterative process, all the selected models in the en-

semble were fused using a non-weighted strategy. We estimated the mean of 

the 3 a posteriori probabilities for all the subjects over all the selected models. 

The maximum fused a posteriori probabilities were finally used to estimate 

the final label of the CAD test dataset. 

 

This procedure is used in the four following scenarios: 

 

1. Using ADNI1 as training dataset and SNIPE and FACE features (98 fea-

tures in total) 

2. Using ADNI1 as training dataset and SNIPE features (8 features) 

3. Using ADNI2 as training dataset and SNIPE and FACE features (95 fea-

tures in total) 

4. Using ADNI2 as training dataset and SNIPE features (8 features) 

Finally, the four scenarios were combined by using the grand mean of all a posterior 

probabilities from the scenarios. As in step four above, the maximum posterior proba-

bility was used to label the images. 

Using the CADDementia training data (n=30), the correct classification rates of 

each of the three classes (AD/MCI/CN) were calculated for all five scenarios. 



 

 

Fig. 1. Thresholded t-maps for ADNI1 MCI/CN contrast (left) and ADNI2 MCI/CN contrast 

(right). Notice the difference in statistical strength due to sample size differences. 

 
Fig. 2. Cortical thickness ROIs generated by respectively ADNI1 cohorts (left) and ADNI2 

cohorts (right). 



3 Results 

3.1 Computational time 

The classification process is fully automatic. Using a single core (Intel Core i7 

@3.40Ghz) per subject the total computational time was approximately 55 minutes 

distributed on preprocessing (30 min), FACE (15 min), and SNIPE (10 min). Apply-

ing the classifier after it has been trained takes only a few seconds. 

3.2 CADDementia training set 

The final accuracy of the ensemble classifiers obtained on the CADDementia train-

ing set are presented in Table 2.  

Table 2. Classification accuracies of the five classifiers when applied on CADDementia train-

ing data. All numbers are in percentage (%). 

 Classification accuracy 

Classifier CN MCI AD Overall 

SNIPE/FACE ADNI1 75.0 66.7 66.7 70.0 

SNIPE ADNI1 75.0    77.8 77.8 76.7 

SNIPE/FACE ADNI2 58.3 66.7 77.8 66.7 

SNIPE ADNI2 66.7    66.7    77.8    70.0 

Combined 75.0 66.7 77.8 73.3 

4 Discussion 

The results on the CADDementia training data may be inflated due to the grid 

search for optimal parameters. Nevertheless the results indicate the ranking of the 

different classifiers. It seems that training on ADNI1 data provides better results than 

training on ADNI2 data even though ADNI2 data should better represent the 

CADDementia data using only 3T images. The difference is most likely due to more 

available training data in the ADNI1 cohorts leading to well-defined classes. Thus the 

morphological variation of the three populations (AD/MCI/CN) is better represented 

in the larger sample. Adding cortical thickness features to the SNIPE features does 

not seem to improve results. In fact, it seems to impair the classifiers, possibly due to 

adding noise. Perhaps fewer and more carefully selected ROIs in the neocortex would 

have better complemented the MTL features and thus added discriminative infor-

mation. Combining the four classifiers does not increase accuracy. 

The AD group has consistently the highest (or tied with the highest) classification 

accuracy across all five classifiers. As expected the main difficulty in the three-way 

classification problem is to separate CNs and MCIs. A different strategy could have 

been to primarily focus on this problem by combining binary classifiers with the idea 

of “one class against all” applied in succession. 



Looking at the demographics there is a significant age difference between ADNI 

and CADDementia data. We addressed this issue by adjusting the features for linear 

age effects using the ADNI CN subjects. However, this may not sufficiently compen-

sate for the age differences between the cohorts. Due to aging effects, such as demye-

lination of the brain tissues, the MRI signal is not independent of subject age. Thus 

features based on image intensity and texture, such as the SNIPE features, are affected 

by these properties of the MR signal. Cortical thickness estimates are also affected, 

however, most likely to a lesser extent. Similarly, differences in field strength be-

tween training and testing data will affect the classifier performance. 

The sample size of the CADDementia training data is too small to be representa-

tive of the large morphological variation typically found in demented as well as 

healthy brains. Thus training on a separate dataset, in our case ADNI data, is absolute-

ly necessary to obtain a well-balanced and unbiased classifier. When the underlying 

labels of the CADDementia testing data is revealed, we will know whether our strate-

gy using ADNI data was the right choice. 
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