


Preface

Promising results of computer-aided diagnosis (CAD) methods for dementia have
been presented in the literature, but it is unclear how the different algorithms
would perform on previously unseen data, and thus, how they would perform in
clinical practice. To address this, we initiated the CADDementia challenge on
computer-aided diagnosis of dementia based on structural MRI data.

This challenge aims to objectively compare algorithms for dementia classifi-
cation based on a clinically representative multi-center data set. Research groups
were invited to run their classification methods on the data and make a multi-
class classification of patients with Alzheimers disease (AD), patients with mild
cognitive impairment (MCI) and healthy controls (CN). The clinical diagnosis
assessed with the most current and widely used criteria is used as a reference
standard. For evaluation of the algorithms, a standardized methodology has been
developed based on three key points: comparability, generalizability, and clinical
applicability. First, comparability was enhanced by the use of the same data set
and evaluation methods. Second, by providing a previously unseen multicenter
data with blinded ground truth diagnoses overtraining is avoided and general-
izability of the methods is promoted. Third, according to the current clinical
standards, a multi-class diagnosis of AD, MCI and controls is evaluated.

The workshop of the CADDementia challenge is held on September 18th, in
conjunction with the 17th International Conference on Medical Image Comput-
ing and Computer Assisted Interventions (MICCAI 2014) in Boston, USA. At
this workshop, the first results and participating methods of the challenge are
presented. Fifteen workshop papers of challenge participants were accepted for
presentation at this workshop. Based on technical quality and results, five of
the papers were selected to be presented in an oral presentation. For the other
papers, the authors were given the opportunity to present their algorithms with
a poster presentation.

We would like to thank all the participants for their hard work in processing
the 384 images and developing a classification method over a relatively short
time period. We also would like to thank the MICCAI 2014 organizers, the guest
lecturer Prof. Giovanni Frisoni, the data-contributing centers and the workshop
sponsors Quantib BV and Biomediq.

These proceedings consist of 1) the program of the workshop, 2) more infor-
mation on the challenge framework, and 3) the 15 accepted workshop papers.
More details can be found on http://caddementia.grand-challenge.org.

Esther E. Bron
Marion Smits

Prof. John C. van Swieten
Prof. Wiro J. Niessen

Stefan Klein
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Workshop program

8.00-8.15 Opening by Prof. Wiro Niessen

8.15-9.00 Guest lecture by Prof. Giovanni Frisoni: Structural features for

diagnosis and tracking of Alzheimer’s disease

Laboratory of Epidemiology, Neuroimaging & Telemedicine, IRCCS San Giovanni
di Dio - Fatebenefratelli, Italy; Memory Clinic and Laboratory of Neuroimaging of
Aging, University Hospitals and University of Geneva, Switzerland

9.00-9.15 Dementia classification based on brain age estimation

K Franke, C Gaser
Structural Brain Mapping Group, Departments of Neurology & Psychiatry, Jena Uni-
versity Hospital, Germany

9.15-9.30 Alzheimer’s disease state classification using structural

volumetry, cortical thickness and intensity features

C Ledig, R Guerrero, T Tong, K Gray, A Schmidt-Richberg, A
Makropoulos, RA Heckemann, D Rueckert
Department of Computing, Imperial College London, UK

9.30-9.35 Preview of challenge results

9.35-10.00 Poster Session

1. Voxel-based multi-class classification of AD, MCI, and

elderly controls. Blind evaluation on an independent

test set

A Abdulkadir, J Peter, T Brox, O Ronneberger, S Klöppel
Department of Psychiatry and Psychotherapy, University Medical Centre Freiburg,
Germany

2. PRISMA-CAD: Fully automated method for computer-

aided diagnosis of dementia based on structural MRI data

N Amoroso, R Errico, R Bellotti, the ADNI
National Institute of Nuclear Physics, Branch of Bari, Italy

3. CADDementia based on structural MRI using supervised

kernel-based representations

D Cárdenas-Peña, A Álvarez-Meza, G Castellanos-Dominguez
Signal Processing and Recognition Group, Universidad Nacional de Colombia,
Colombia

4.Classification of Alzheimer’s disease using structural MRI

CV Dolph, MD Samad, KM Iftekharuddin
Vision Lab, Old Dominion University, VA, USA

5. Detecting Alzheimer’s disease by morphological MRI

using hippocampal grading and cortical thickness

SF Eskildsen, P Coupé, V Fonov, DL Collins, the ADNI
Center of Functionally Integrative Neuroscience, Aarhus University, Denmark
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6. MRI based dementia classification using semi-supervised

learning and domain adaptation

E Moradi, C Gaser, H Huttunen, J Tohka, the ADNI
Department of Signal Processing, Tampere University of Technology, Finland

7. Advanced feature selection in multinominal dementia

classification from structural MRI data

A Sarica, G Di Fatta, G Smith, M Cannataro, D Saddy, the ADNI
Department of Medical and Surgical Sciences, Magna Graecia University of
Catanzaro, Italy

8. Global Disease Index, a novel tool for MTL atrophy

assessment

F Sensi, L Rei, G Gemme, P Bosco, N Amoroso, A Chincarini, the
ADNI
National Institute of Nuclear Physics, Branch of Genoa, Italy

9. Towards the computer-aided diagnosis of dementia based

on the geometric and network connectivity of structural

MRI data

GM Smith, ZV Stoyanov, DV Greetham, P Grindrod, JD Saddy, the
ADNI
School of Systems Engineering, University of Reading, UK

10.MIND-BA: Fully automated method for computer-aided

diagnosis of dementia based on structural MRI data

S Tangaro, P Inglese, R Maglietta, A Tateo, the ADNI
National Institute of Nuclear Physics, Branch of Bari, Italy

10.00-10.30 Coffee break + Poster Session

10.30-10.45 Evaluation of morphometric descriptors of deep brain struc-

tures for the automatic classification of patients with

Alzheimer’s disease, mild cognitive impairment and elderly

controls

A Routier, P Gori, AB Graciano Fouquier, S Lecomte, O Colliot, S
Durrleman, the ADNI
Sorbonne Universités, UPMC Université Paris, France

10.45-11.00 Dementia diagnosis using MRI cortical thickness, shape,

texture, and volumetry

L Sørensen, A Pai, C Anker, I Balas, M Lillholm, C Igel, M Nielsen
Department of Computer Science, University of Copenhagen, Denmark

11.00-11.15 BrainPrint in the computer-aided diagnosis of Alzheimer’s

disease

C Wachinger, K Batmanghelich, P Golland, M Reuter
Computer Science and Artificial Intelligence Lab, MIT, MA, USA

11.15-12.00 Presentation of the challenge results, including award ceremony
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The CADDementia Evaluation framework

In this section, we describe the datasets, the reference standard and the evalua-
tion measures used in the evaluation framework.

Data

As data for the evaluation framework, we composed a multi-center data set
consisting of 384 scans. The participating centers are: Erasmus MC (EMC),
Rotterdam, the Netherlands; VU University Medical Center (VUmc), Amster-
dam, the Netherlands; University of Porto / Hospital de São João (UP), Porto,
Portugal. This data set contains structural MRI (T1w) scans of subjects with
the diagnosis of probable Alzheimer’s disease (AD), mild cognitive impairment
(MCI) and participants without a dementia syndrome (controls). In addition to
the MR scans, demographic information (age, gender) and information on which
data are from the same institute is included.

Most of the data is used for evaluation of the methods: the test set. A small
part of the data is provided as training data set, which consists of 30 scans
distributed over the diagnostic groups of which the diagnostic labels were made
available. We decided to limit the training set to 30 subjects. Since we aim to
evaluate the performance in a clinical situation, when not much data similar
to the test data is available, we expect data from other sources to be used for
training.

The data characterisics are listed in Table 1. The class sizes are not released
before the workshop. The prior for each class is ∼1/3.

Reference standard

In the data set AD patients, MCI patients, and controls are included. The data
have been acquired either as part of clinical routine or as part of a research study
at three centers. All patients underwent neurological and neuropsychological
examination as part of their routine diagnostic work up. The clinical diagnosis is
established by consensus of a multidisciplinary team. Patients with AD met the
clinical criteria for probable AD [1,2]. MCI patients fulfilled the criteria specified
by [3]. All subjects signed informed consent and the study was approved by the
EMC medical ethical committee.

Data preprocessing

The T1-weighted MRI data were anonymized and faces were removed from the
scan. Next to the original anonymized T1w scans, non-uniformity corrected scans
were also made available. The correction was performed with N4ITK [4] with the
following settings: shrink factor = 4, number of iterations = 150, convergence
threshold = 0.00001, initial b-spline mesh resolution = 50.
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Table 1: Data characteristics, FSPGR: fast spoiled gradient-recalled echo, IR: in-
version recovery, MPRAGE: magnetization prepared rapid acquisition gradient echo,
Prot.: Protocol

EMC VUmc UP

Scanner 3T, GE Healthcare 3T, GE Healthcare 3T, Siemens
Discovery MR750 Signa HDxt Trio A Trim

Sequence 3D IR FSPGR 3D IR FSPGR 3D MPRAGE
Scan parameters Prot. 1: 450ms/7.9ms/3.1ms
(TI/TR/TE) Prot. 2: 450ms/6.1ms/2.1ms 450ms/7.8ms/3.0ms 900ms/2300ms/3.0ms

Prot. 3: 300ms/10.4ms/2.1ms
Parallel imaging Prot. 1: Yes (ASSET factor=2)

Prot. 2: Parallel imaging: No Yes (ASSET factor=2) No
Prot. 3: Parallel imaging: No

Resolution Prot. 1: 0.94x0.94x1.0 mm (sagittal)
Prot. 2: 0.94x0.94x0.8 mm (axial) 0.9x0.9x1 mm 1x1x1.2 mm
Prot. 3: 0.49x0.49x0.8 mm (axial)

Number of scans 174 180 30
Age Mean (Std) 68.6 (7.8) 62.2 (5.9) 67.8 (9.1)
Male (%) 63% 59% 50%

Evaluation

In this challenge, teams submitted outcomes on a large test set. Submitting the
diagnostic label for each sample was obligatory. Additionally, submitting the
output probabilities for each label was encouraged.

Accuracy and the true positive fraction for the three classes are calculated
from the diagnostic labels. For every class, an ROC curve is calculated from
the output probabilities, showing the ability of the classifier to separate that
class from the other two classes. In addition, a multiclass AUC is calculated
[5]. These measures are calculated separately on the test and training set. The
Python scripts for evaluation can be downloaded from the web site.

Submitted algorithms are ranked based on accuracy on the test set. Algo-
rithms for which output probabilities are available are also ranked on the AUC
on the test set. The algorithm with the best accuracy (rank=1) on the test set,
is the winning algorithm. In case two or more algorithms have equal accuracies,
the average rank is assigned to these algorithms.

Web-based evaluation framework

The framework as proposed in this challenge is made publicly available through
a web-based interface (http://caddementia.grand-challenge.org). From this pro-
tected web site, a part of the data was downloaded by the participants. The
data available for download were, for the training set: 30 T1w scans from the
probable AD, MCI and controls groups including diagnostic label, age, gender
and scanner information; and for the test set: 254 T1w scans from the probable
AD, MCI and control groups including age, gender and scanner information.
The participants submitted their predictions and supporting workshop papers
via the web site. We performed the validation for the test set with the software
that is available for download as well.
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Voxel-Based Multi-Class Classification of AD,
MCI, and Elderly Controls

Blind Evaluation on an Independent Test Set

Ahmed Abdulkadir1,2,3, Jessica Peter2, Thomas Brox3, Olaf Ronneberger3,4,
and Stefan Klöppel1,2

1 Department of Psychiatry and Psychotherapy, University Medical Centre Freiburg,
Freiburg, Germany

2 Department of Neurology, University Medical Centre Freiburg, Freiburg, Germany
3 Department of Computer Science, University of Freiburg, Freiburg, Germany

4 BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg,
Germany

Abstract. We trained a multi-class support vector machine (SVM) with
probabilistic outputs on a large, publicly available sample (n = 1429) of
healthy controls, individuals with mild cognitive impairment (MCI), and
patients with probable Alzheimer’s disease (AD). The test performance
on a small validation set (n = 30) was similar to the cross-validation
performance of the training set. Average area under the curve was 0.84
for the validation and 0.79 for the training set. The model was then
applied to the test set (n = 354) of which no labels were known and the
predictions were submitted to the CADDementia Challange.
The method required one hour computation time on a single CPU per
subject, and almost no manual intervention.

1 Introduction

Diagnosis of dementia is an important task in clinical routine. In vivo brain imag-
ing supplements clinical assessments by providing information about structure
and function and can be used for assisting the diagnosis using automated ma-
chine learning methods [11, 15]. In a direct comparison, an automated method
for diagnosing Alzheimer’s disease (AD) performed as well as or better than
clinicians [12]. In a previous study, that we conducted with four different data
sets using functional and structural MRI markers, the structural markers were as
sensitive as functional imaging markers in diagnosing pre-symptomatic Hunting-
ton’s disease [2], despite the fact that functional dysfunction precedes structural
degeneration in the central nervous system [10]. A direct comparison of different
automated methods for diagnosing AD based on structural MRI was conducted
by Cuingnet et al. [6]. The data used for the study was acquired on multiple cen-
ters for the Alzheimer’s Disease Neuroimaging Initiative (ADNI). One of the best
performing methods [13] used features similar to those in voxel-based morphom-
etry (VBM) [4]. We showed in multiple studies that the typical pre-processing
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for VBM studies leads to systematic differences between scanners, but at the
same time, the extracted data was sufficiently robust to classify the presence of
a disease across sites, and acquisition protocols [13, 1, 14, 20, 3]. Due to the high
performance in previous study and robustness in different scenarios, VBM fea-
tures were selected as the means of classification. In order to increase sensitivity
and specificity, we applied data driven feature selection. Further, we aimed to
reduce confounding effects of age, head size, and sex.

2 Materials

2.1 Test Data

The test data was provided through the web site on the challenge on Computer-
Aided Diagnosis of Dementia (CADDementia) based on structural MRI data1.
CADDementia provided T1 weighted MRI along with age and sex as basic de-
mographic covariates. Data was acquired on three different scanners with five
different scanning sequences. The 354 subjects included in the study were clas-
sified in three groups; Healthy controls (HC), individuals with mild cognitive
impairment (MCI), and patients with AD. Patients labeled AD met the clin-
ical criteria for probable AD according to [16, 17]. Patients labeled MCI met
the criteria stipulated by [19]. One site used three different protocols; the other
two sites acquired the images using a single protocol. No diagnostic labels were
provided for the test data. Demographic data are shown on Table 1.

Table 1. Demographic data of the training, validation, and test set. HC: healthy
controls, MCI: mild cognitive impairment, AD: Alzheimer’s disease, F: female, M: male,
N.A.: information was not available

HC/MCI/AD F/M age [years]

ADNI 371/631/287 582/707 73.7±7.3
AIBL 79/31/30 80/60 74.5±7.4
CADDementia (validation) 12/9/9 13/17 65.2±7.0
CADDementia (test) N.A. 141/213 65.1±7.8

2.2 Validation Data

The validation dataset - also provided by the CADDementia Challenge - con-
sisted of thirty examples that also included class labels. Acquisition sites, pa-
rameters, and inclusion criteria were identical to the test data set.

1 http://caddementia.grand-challenge.org
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2.3 Training Data

Structural MRI from baseline scans of the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) database2 [18] and from the Australian Imaging, Biomarker
& Lifestyle Flagship Study of Ageing (AIBL) database3 [8] were used. A goal
of ADNI has been to test whether serial magnetic resonance imaging, positron
emission tomography, other biological markers, and clinical and neuropsycholog-
ical assessment can be combined to measure the progression of MCI and early
AD. The AIBL database consists of several hundred structural scans that were
acquired on a single scanner. The study methodology has been reported previ-
ously [8]. We used baseline images from about 1429 subjects from AIBL and
ADNI. Images from the ADNI were removed if either the subject converted or
reverted during the course of the study. A demographic summary of the training
data can be found on Table 1.

Four our study, individuals in the training data set were classified in AD,
mild cognitive impairment (MCI), and healthy controls (HC).

3 Methods

3.1 Image pre-processing

The goal of image pre-processing was to obtain the input data for the automated
classification process. We extracted very high-dimensional GM intensity maps
for voxel-wise classification. Pre-processing of images was identical for train-
ing, validation, and test sets. Initially, the raw images were coregistered to the
canonical T1 template in SPM8 using a rigid registration implemented in the
SPM8 toolbox4. Then, using VBM8 toolbox5, we computed voxel-wise densities
of gray matter (GM) that were normalized to a reference space. Maps were sub-
sequently modulated by the determinant of the Jacobian of the local deformation
field. The modulation thus accounted for non-linear volume changes, but ignored
global (affine) volume changes. If multiple baseline images were available for a
subject, the mean of all available GM maps was taken. The initial registration
failed in some cases, which required manually registering the images to the tem-
plate. Thus, the employed method was semi automatic, although the manual
intervention was minor and did not require expert knowledge. The image pre-
processing per image took about one hour on a single core. Computation of one
column of the kernel matrix, which included computing pair-wise dot-products
between GM maps, took a couple of seconds. Manual registration (required in
approximately 10% of the test cases) took a few minutes per subject.

2 http://adni.loni.usc.edu
3 http://www.aibl.csiro.au
4 http://www.fil.ion.ucl.ac.uk/spm/software/spm8/
5 http://dbm.neuro.uni-jena.de/vbm

MICCAI 2014 - Challenge on Computer-Aided Diagnosis of Dementia Based on Structural MRI Data

10



3.2 Feature Selection

In previous studies [12, 3, 14, 2, 1] we used a linear SVM in combination with
high-dimensional GM density maps including either all voxels or selecting voxels
a priori. Here, we used the linear binary classifier with a hard margin in order to
make the feature selection. Using 20% of the training data, one model for every
binary classification was trained. For each classifier, using the method proposed
by Gaonkar and Davatzikos [9] the p-values of the weights were computed and
features were included only if the p-value was lower than a certain threshold. The
threshold was 0.0001, 0.001, and 0.01 for ADvsHC, MCIvsNC, and ADvsMCI,
respectively. The kernel computed from the subset of significant features was
then used for the multi-class classification as explained in the next subsection.
Computation for training a model and performing feature selection required
about one minute of computation time, provided that the kernel matrix was
computed and all required data was in the memory.

3.3 Nuisance Correction

We used kernel regression to correct for confounding effects such as age, sex
and total intracranial volume to remove confounds from the linear dot-product
matrix of the gray matter values. Computation time for this step was smaller
than one second and thus was negligible compared to the time that was required
for the pre-processing. Given the kernel matrix K ∈ R

N×N , the detrended kernel
K̃ was computed as

K̃ = RKRT , R = I−X
(
XTX

)−1
XT , (1)

where I was the identity matrix and X ∈ R
N×3 the design matrix of N subjects

coding sex, age, and total intra-cranial volume. This method was the same as
previously proposed by Dukart et al. [7], but uses sex and TIV as additional
covariate and performs the detrending in kernel space.

Unlike in previous work [14], we did not correct for scanner/sequence for this
study, since not enough training data was available. Specifically, only about four
images of healthy controls per scanner/sequence were available in the validation
set. Of note, the age distribution in the training and test sets differed significantly
(p < 0.05, Student’s t-test). Since age, and AD both are associated with neuronal
degeneration in partially overlapping regions, we expected a bias due to age.
Specifically, we expected a lower sensitivity, because AD progression is positively
correlated with age [7]. Thus younger subjects are less likely to be classified as
AD.

3.4 Multi-class Classification

Multi-class linear classification in the one-versus-one setting is not well suited
for classification of controls, MCI, and AD, because MCI is in between controls
and MCI. We therefore employed a non-linear SVM with radial basis function
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k(xi,xj) = exp (−γ||xi − xj ||). For classification, we used one versus all sup-
port vector machine (SVM) as implemented in libsvm [5] with the option for
probabilistic multi-class outputs [21]. The SVM parameters were set manually
to C = 2 and γ = 0.0002. These combination achieved similar performance on
the training and validation set (Figure 1). The performance on the validation
set was obtained by using the predictions by the model trained using all train-
ing examples that were not used to estimate p-values for feature selection. The
performance on the training set was computed in a ten fold cross-validation.

4 Results

Classification results were obtained for the training set (n = 1429) by cross-
validation, and on the validation set (n = 30) by applying the model trained
on the entire training set. Test accuracy of binary classification of the valida-
tion (training) set of HC, MCI, and AD versus rest was 41.7% (62.1%), 66.7%
(64.8%), and 77.8% (70.2%), respectively. Discriminability of the validation set
in terms of AUC was highest for AD (96.8%), intermediate for HC (84.7%),
and lowest for MCI (67.7%), as shown in Figure 1. The same order was ob-
served in training set as well. Predictions on the test set were submitted to the

Fig. 1. Performance curves of training and validation set.

CADDementia committee.

5 Discussion

Training and test/validation sets differed in scanner hardware, acquisition pa-
rameters and inclusion criteria. Furthermore, the populations of controls and
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patients were possibly more distinct in the training set, as conversion and rever-
sion lead to exclusion. In addition, the test population was significantly younger
than the test population. The correction for age effects and multi-centric studies
conducted previously [3, 14], suggest that the most relevant factor that could lead
to a discrepancy in cross-validated training performance versus test performance
are the class-wise difference in population.

As expected, classification performance of the three classes HC, and AD was
well above chance on the train and validation set. Discriminating MCI from the
rest was more certain. Binary classification of HC and AD subjects reached up
to 90% accuracy. These results were obtained with an (almost fully) automated
processing pipeline, which required no expert knowledge in the classification
process.

One drawback of the presented methods is, that the classification process
used the same features for all classification tasks. Although MCI can be seen as
pre-state of AD, the optimally discriminative features between HC and MCI are
not necessarily the same as the optimally discriminative features between MCI
and AD or between HC and AD.

The SVM, as discriminative method, performed well in many similar classifi-
cation tasks that were evaluated by cross-validation. In the present setting, the
validation set remained entirely untouched. This reduced the risk of overfitting
the model. However, since the parameters were hand-tuned and picked in such a
way that the cross-validated performance on the training set was similar to the
validation performance, there was a risk of overfitting to the validation set. We
therefore expect a slightly lower performance on the test set.
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Effects of hardware heterogeneity on the performance of SVM Alzheimer’s disease
classifier. NeuroImage 58(3), 785–792 (2011)

2. Abdulkadir, A., Ronneberger, O., Christian Wolf, R., Pfleiderer, B., Saft, C.,
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11. Klöppel, S., Abdulkadir, A., Jack Jr, C.R., Koutsouleris, N.: Diagnostic neuroimag-
ing across diseases. Neuroimage (2012)
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Abstract. Neurodegenerative association with structural changes of the
brain has been widely investigated gaining profound knowledge on spe-
cific aspects of the healthy and diseased brain. Medial temporal lobe atro-
phy and, in particular, the hippocampal atrophy are important biomark-
ers for the Alzheimer’s disease. In this paper we describe how MRI brain
scans can be processed and analyzed, in a fully automated framework,
to segment relevant anatomical structures, extract morphometric and
statistical features and perform an accurate clinical classification on the
basis of anatomical and statistical features. We trained an artificial neu-
ral on a population consisting of 288 subjects to discriminate normal
control subjects (NC), from those affected by Alzheimer’s disease (AD)
and mild cognitive impairment (MCI) with a one versus one strategy.
Performances were validated with k-fold procedure, NC-AD were dis-
criminated with accuracy ACC (NC-AD) = 0.91 while the overall accu-
racy ACC (NC-MCI-AD) reached the 0.81 value.

1 Introduction

Neuroscience is generating exponentially growing volumes of data and knowledge
on specific aspects of the healthy and diseased brain, in different species, at
different ages. However, there is no effective strategy to experimentally map the
brain across all its levels and functions, yet. A proof of interest in the field is the
recent funding of worldwide initiatives, such as the Human Brain Project 4 and
the Human Connectome Project 5l.

�� Data used in preparation of this article were obtained from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investiga-
tors within the ADNI contributed to the design and implementation of ADNI and/or
provided data but did not participate in analysis or writing of this report. A com-
plete listing of ADNI investigators can be found at: http ://adni.loni.usc.edu/wp−
content/uploads/how to apply/ADNI Acknowledgement List.pdf

4 www.humanbrainproject.eu
5 www.humanconnectomeproject.org
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Medical image computing raises new challenges related to the scale and com-
plexity of the required analyses. For example, magnetic resonance imaging (MRI)
of the brain plays a fundamental role for detection of neurodegeneration. The
manual segmentation on MRI has been so far considered the only available strat-
egy to accurately access reliable structural biomarkers and therefore to achieve
a sound quantitative clinical discrimination. Nevertheless, manual segmentation
is a time-consuming task nor it can manage the intrinsic human intra-rater
variability, this is why automated processing pipelines are needed as diagnosis
support systems.

In the present paper a novel fully automated processing workflow is described.
It consists of three main steps. Firstly the pre-processing, an automated rigid
registration and histogram based equalization for spatial and intensity normal-
ization. Then, a volume of interest (VOI) extraction is performed; this VOI
individuates a gross region containing the left and right hippocampi, from this
region important features as the hippocampal volume or its thickness are calcu-
lated. Finally, the classification (NC - MCI - AD) is obtained with an automated
artificial neural network.

2 Materials

The goal of this work is to provide a fully automated and reliable diagnosis sup-
port system to discriminate NC - MCI - AD. The CADDementia challenge aims
to compare several methods and protocols to unveil, on the basis of a common
test set whether significant differences exist among the various algorithms. Ac-
cording to this a standardized evaluation framework is set up, consisting of 384
multi-center scans. The participating centers are: Erasmus MC (EMC), Rotter-
dam, the Netherlands; VU University Medical Center (VUmc), Amsterdam, the
Netherlands; University of Porto / Hospital de São João (UP), Porto, Portugal
This data set contains structural MRI (T1w) scans of subjects with the diagno-
sis of probable Alzheimer’s disease (AD), mild cognitive impairment (MCI) and
participants without a dementia syndrome (controls). In addition to the MR
scans, demographic information (age, gender) and information on which data
are from the same institute is included.

To reach this goal 30 MRI brain scan are provided by the MICCAI CADDe-
mentia challenge (http://caddementia.grand-challenge.org) for training. Never-
theless, an increased basis of knowledge should help classification to build more
generalized model and this is why a second dataset consisting of 258 MRI brain
scans shared by the Alzheimer’s Disease NeuroImaging Initiative (ADNI) was
used. The two training databases used are described with demographics given
in table 1.

3 Methods

In this study a fully automated pattern recognition system for accurate and
reproducible segmentation of the hippocampus and the peri-hippocampal region
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Data Size Age M/F Subjects

ADNI 258 60 - 96 144/114 96 NC - 96 MCI - 66 AD
MICCAI 30 54 - 80 17/13 12 NC - 9 MCI - 9 AD

Table 1. Data demographics. Group size, range age (years) and resolution of the two
clinical datasets, containing normal control (NC) subjects, Alzheimer’s Disease (AD)
and mild cognitive impairment (MCI) patients.

in structural Magnetic Resonance Imaging (MRI) was used. This procedure,
described in detail in our previous works in [1,2,3,4], is schematically shown in
figure 1.

Fig. 1. The figure represents the overall processing pipeline. The MRI scans are
processed independetly by FreeSurfer and an automated segmentation pipeline
hippocampus-focused. The calculated features are used to train an artificial neural
network in a 5-fold cross validation frameowrk, then finally classification is performed.

The system consisted of three processing levels: (a) MRI brain scans were
linearly registered to the standard MNI152 template and an automated point
distribution shape analysis method was used to define the peri-hippocampal
region. (b) Feature extraction: the peri-hippocampal VOI was statistically ana-
lyzed; gray level distribution features such as means, standard deviations, kur-
tosis and skewness were calculated. Moreover, other morphometric hippocampal
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based features such as the whole volume, the thickness, or local geometric fea-
tures were calculated. In addition other features were calculated with a publicly
available brain segmentation package FreeSurfer v.5.1 6 [5] for an overall amount
of 248 features. (c) Subject classification: a back propagation neural network was
used to classify examples as NC, MCI and AD. An unsupervised filter was used
to explore the feature space and determine correlations and linear dependences,
in this way a subsample of about 150 features was determined. Features were
normalized with the intra-cranial volume and finally normalized then, a one
versus all strategy was adopted for training the network.

The network architecture was kept as simple as possible to avoid over-training
issues, just one hidden layer with 10 neurons was used and a regularized cost
function was adopted. To improve the generalization of the trained model a 5-fold
strategy was used, in addition a random sampling of 50 features for every cross-
validation round was performed. We repeated this procedure for a hundred times,
thus obtaining 1500 trained networks. For every cross-validation round a 288×3
score matrix is obtained. Training performances are obtained by averaging the
score matrix for every cross-validation and then averaging the class probabilities
obtained from the different classifiers, in fact according to the one versus we
trained a NC vs AD classifier, a NC vs MCI classifier and an AD vs MCI classifier,
thus for example for NC subjects two distinct probabilities were given for each
cross-validation step.

3.1 Computational infrastructure

The analyses presented in this paper were developed in MATLAB framework
and required substantial computational resources. The previously described au-
tomated processing pipeline required an overall processing time of about 13
hours for subject, this processing time was almost entirely due to FreeSurfer. In
fact, the processing time required to extract the hippocampal and the statistical
features did not exceed one hour per subject. Therefore the use of dedicated
workflow manager such as the LONI pipeline processing environment [6][7] was
used: a user-friendly and efficient software for complex data analyses, available
at http://pipeline.loni.ucla.edu and an adequate distributed infrastructure was
of fundamental importance.

The analyses were carried out using the local computer farm BC2S 7: a
distributed computing infrastructure consisting of about 5000 CPU and allowing
up to 1,8 PB storage. A further study for grid deployment was also performed,
within the aim of creating a pipeline tool suitable for large clinical trials. It was
carried out on the European Grid Infrastructure (EGI) which consists of about
300 geographically distributed sites around the world. The run-time reduction
with the grid implementation allowed to produce results in a reasonable time
with respect to the application execution as a sequential process on limited
resources. The advantages of the grid execution were evident since we obtained
the 90% of the analysis of 642 images after less than 16 hours.

6 freesurfer.nmr.mgh.harvard.edu
7 http://www.recas-pon.ba.infn.it
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4 Results

The overall training results showed a significant discrimination among the three
populations. Performances were measured in terms of accuracy (ACC) and area
under the receiver operating characteristic (AUC). Figure ?? shows the overall
training results.
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Fig. 2. The figure represents the receiver operating characteristics of the three classes:
NC (blue), MCI (green) and AD (red) for both the overall training set (on the left)
and the 30 MICCAI images (on the right). AUC is also reported for all of them, it can
be seen how NC and AD are recognized slightly better than MCI.

Performances on the reduced training set (the MICCAI data) resulted sig-
nificantly lower, with an average accuracy ¯ACC = 0.67± 0.3. However the data
size does not allow to draw statistically significant conclusions 3.
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Fig. 3. The figure shows the confusion matrix relative to the overall training (on the
left) and the 30 MICCAI training images (on the right). Classes 1-2-3 are respectively
the NC, the MCI and the AD classes.

The networked already trained were then used to obtain the test predictions.
To improve generalization, we randomly sampled 300 classifiers from the 1500
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already trained (100 for each type: NC-AD, NC-MCI and AD-MCI) and obtained
for test example a prediction to be NC, MCI and AD. As previously explained
for training, the average class probability was reported as the final classification
score.

5 Discussion and Conclusion

Accuracy and area under the curve results suggest the method is reliable, besides
being fully automated it can be adopted for large studies without suffering of
intra-rater variability nor requesting time-intensive manual work from experts.

Classification performances compare well state-of-the-art performances thus
suggesting the overall analysis workflow is reliable. The reduced number of fea-
tures used for classification also suggest the possibility to significantly improve
performances with the individuation of new features. The most important fea-
tures for classification resulted to be those correlated to temporal lobe and hip-
pocampal atrophy, on one hand this demonstrates that the volumes obtained by
the proposed workflow are reliable, on the other it should also suggest to explore
and investigate new features to improve the clinical discrimination.

Unsupervised approaches, such as deep learning networks, could be naturally
included in the proposed framework and will be investigated in future works. Be-
sides, those issues deriving from the computational burden yielded by FreeSurfer
should also be addressed, the most promising strategy, according to our results,
could be the individuation of statistical features which could substitute those
obtained by FreeSurfer.
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�� �������� �	� 
������� ���� �������� �� ��� ��� �� ����� Av �� � ���
����� ������� ��� ��! "	��� �	� ������� �������� �������� �� ���������� �� �	�
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���������� �*�$� ��� 	����	� �������� �'��� $� �� "���	 ������ �	�� � ��� %��
��� ����"���	 �� ����� �+� ��� �,� ���� �� �������� ������ -���� �	�  ����������
�� �	� .������� %����� g(·;σ) ����� �� ���� "	��� �� �	� %����� ����"���	 �����
�� ���	�� ���� �� ��/���� �� ��� �� ����������� σ  ���� �������� "����� ��� ���
�������  �����! "� ������� �� ��0��� �	� .������� %����� ����"���	 ���������
�	� �����"��� ��������� �'������� var(·) ������ ��� �	�  ������� ���������&

σ∗ = argmax
σ

{var(g(·;σ)} �1�

� ������� ��� 	
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2�� �������� �	� �������� *3$ �������������� �������	! �	� �)'$ ������� "��
��������� -����/�����! � ������ �� 451 45 *3$  ������ ��� ���������� ���� ���
0���� ���� ���� �� �� 67 ����� �891 '�! :7� *�$! ��� 61 �)�� #�� ���� ������
��� ���� /������ ����� �	� "���%��"� '4 �������	�� �� � ����	�� �������������
�����! ���	 ����� �� ���������� �� �	� *'$47� �������� �� �� �;�� ���������
�� ��������� �	� "	��� ������� �� �	� 5�������	 ������

� �������

2���� 8��� �� 8��� �	�" � �������� *3$ �<����� ������������ ��� �	���  ��"�� ��
���� �� 2���� 8��� �� 8��� ���������� �	��� ������������� ��������� $-
 �����
����������! �	� ��� ������ ����	�� %��� �	� *3$ ����� "��	 �� �������! ����! �	�
���%������� *���� ��! �� �	� -������� $-
 ���� 2��� 8���� �<	����� ��������
������� �� �	� ������������! �� �� ����� �	�� ���	 �������������� �� ���� �� %���
�	� 	��� �������� ��������� 5	�������! ��� �� �	� %����� �	���  ����� ������
����� �� �	� ����� ��������� ������������! "� ����� �	�� �������� $-
 ��������
�	����������� 	��� �	�����

=���� �	� ��� � �������� ������� �<�������� �����! � ��" *3$ ����������
�����<! ��������� ���	 ���� �� ���0����! �� ������� ����� �	� >*-
 �������	�
5	� ����� ��������� ����������� �����< B ��� �	� ��������� ���������� �����<
Kv ��� �������� �� 2��� :��� ��� 2��� :��� ����� �	� ������� �<��  ��" �v = c�!
�������� ���� 2��� ���	 2������! �� ��� �� ���� 	�" �	� ��������� %����� ���������
�	� ���� �	� ����� ����� �����<� 2�� �	� ��%� ��  ������������! ��������� >*-
 ��
���������� ����� �	� "���%��"� #�� ��� �	� /��� �	��� ��������������� ���
�	�"� �� 2��� :���! "	��� �	� �	��� ���������� ������� ��� �� ������� ������/���

2�� �	� ��%� �� � �������� �	� �������� �������	 � -������?�����*��	���
����� ������/�� �� ������� � �� �	� >*-
 �������������� ����� �	� "	��� �)'$
������� ��� ������ �� �	� ��))������� *3$�� @������� �����"��� 3���� ��
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Classification of Alzheimer’s disease using
structural MRI

Chester V. Dolph, Manar D. Samad, Khan M. Iftekharuddin

Vision Lab, Old Dominion University, Norfolk, VA 23529

Abstract. We propose an Alzheimer’s disease (AD) classification method
that uses selected features in segmented brain tissue from individual MRI
slices. The objective of our method is to aid physicians in classifying AD
progression, particularly for subjects with Mild Cognitive Impairment.
The proposed method captures atrophy of regions of the brain without
extracting specific regions such as the hippocampus. All subjects are reg-
istered to an atlas designed for AD research obtained from Laboratory of
Neuro Imaging (LONI) at University of Southern California (USC). Each
slice is segmented into grey matter (GM), white matter (WM), and cere-
brospinal fluid (CSF) to obtain the number of instances of these tissues
per slice. The features include the number of instances of a segmented
tissue in a given slice and the ratio of WM to CSF. The proposed method
uses existing tools for skull stripping, registration, segmentation, and fea-
ture classification. A 10-fold cross-validation on CADDementia training
data of 30 MRI samples yields 80% classification accuracy in classify-
ing the 3 different cognitive states such as Cognitive Normal (CN), Mild
Cognitive Impairment (MCI), and Alzheimer’s disease (AD). Our re-
sults show that all AD and CN patients are classified correctly, however,
subjects with MCI are misclassified mainly as the CN class. Although
a larger training data can enhance the classification result, we use this
limited training data to obtain our test results for 354 patients for this
challenge.

1 Introduction

The progression of AD is of great interest in medical research as 1 in 3 seniors
in the United States dies with dementia [1]. Based on signs and symptoms,
physicians usually track AD using the Clinical Dementia Rating (CDR) system.
Using CDR, subjects are classified in three states such as CN, MCI, and AD.
The progression of AD can be characterized by atrophy of GM and WM along
with expansion of CSF volume. These structural changes in brain facilitate the
distinction of an AD brain from a CN brain; however, the distinction between
MCI and CN is subtle [2]. Previous studies on classifying AD from MRI data
include features based on voxel intensity, volume, regional, and thickness of sub-
cortical areas [3]. Considering individual voxels of entire volume of MRI data is
computationally expensive. On the other hand, focusing on a particular region
of the brain may miss important structural changes happening in other regions
of the brain.
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Fig. 1. Proposed algorithm pipeline.

Other methods include segmentation of the hippocampus [4]. For the MCI
class, where the changes are subtle, considering only a particular region of the
brain may not be helpful in classification. Rather than using individual voxels
or a particular brain region, we consider total number of pixels per slice from
the entire MRI volume for the purpose of feature extraction and classification of
the 3 different cognitive states. From each slice, the proposed method is based
on the total number of pixels per slice classified as GM, WM, and CSF and
their proportional relationships. The benefit of this approach is dimensionality
reduction where the structural changes in the entire MRI data are represented
in a feature dimension equal to the number of slices.

Since AD progresses differently among subjects, our approach captures fea-
tures from selected MRI slices while accounting for tissue atrophy. Starting with
all the slices to probe for structural changes in different tissues, this work applies
a trial and error method to select the slices that best represent the structural
changes for the best performance of 3-class classification. The search for the best
slices starts from the mid region of the brain where the slices encompass most
of the brain tissues.

2 Methods

2.1 Training data

The training data used for this work is obtained from the non-uniformity cor-
rected data from the CADDementia website [5]. This data set consists of 30
subjects structural MRI labeled AD, MCI, or CN. This training data set con-
tains MR image data labeled for 9 AD, 9 MCI, and 12 CN patient classes.

2.2 Algorithm description

The data processing pipeline is shown in Figure 1. The pipeline consists of five
major steps such as skull stripping, registration, segmentation, feature extraction
from slices, and classification. The steps of the pipeline are discussed in details
in the following paragraphs.
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Data pre-processing Prior to feature extraction, the following pre-processing
steps are employed within the pipeline.

Skull stripping The MRI from each subject is skull stripped using the Brainsuite
software tool [6]. In general, default parameters are used in the skull stripping
process. However, if any scalp remains after stripping with default parameters,
the diffusion and iteration parameters are adjusted as necessary to remove the
remaining skull.

Registration Subject MRI scans are registered to the Alzheimer’s disease atlas
obtained from the LONI at USC using Deformable Registration via Attribute
Matching and Mutual-Saliency Weighting (DRAMMS) [7].

Segmentation The brain volumes are segmented into GM, WM, and CSF using
the Brainsuite classification tool [8].

2.3 Feature Extraction

Feature extraction: The features for our classifier are based on the segmented
tissues. GM and WM atrophy is expected of the AD class and to a less extent the
MCI class, while CSF volume simultaneously expands . We sum each segmented
class for each MRI slice to create features that capture atrophy of that specific
segmented brain tissue class. The sum represents the total number of instances
that a segmented tissue is classified as GM, WM, or CSF. For example, a slice
could be described as having 100 pixels, which might be further decomposed as
40 GM pixels, 35 WM pixels, and 25 CSF pixels after the tissue segmentation
step. Since we are expecting fewer instances of GM and slightly more instances
of CSF for a typical AD subject compared to a CN subject, the ratio of total
pixels for GM (given as slice GM) to total number of pixels for CSF (slice CSF)
should yield a larger number than the corresponding ratio of a cognitively normal
subject. We propose the features given as,

(1)

where slice CSF represents total number of pixel for tissue CSF in an MRI slice
and so on. A feature selection step is involved in order to select the MRI slices
that yield the best classification results. For 3-class classification, different multi-
class classifiers such as support vector machine SVM (with both Polynomial, and
RBF kernels) and random forest are evaluated for accuracy on the training data.
A 10-fold cross-validation is performed to find the best classifier and the feature
using the training data set. We use the combination of best performing feature
and classifier to classify the 354 test MRI samples for this challenge.
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3 Results and discussions

3.1 Algorithm performance

Computation of skull stripping and segmentation takes approximately 1 minute
per subject, which is mainly the time to navigate on the graphical user (GUI)
interface of Brainsuite tool. Registration time varies for subjects from about 15
to 20 minutes each for each volume. The registration is completed serially on an
i7 processor with 8 gigabytes of RAM. Increasing the memory capacity of the
machine has the potential of speedup, as currently, there is excessive memory
swap. Analysis of the segmented tissues is performed serially in Matlab on a
MacBook with i5 processor and 8 gigabytes of RAM. This process is parallel, thus
it has potential for significant speedup. Since the proposed feature dimension is
only 46 per subject, it took only several seconds to classify the test data with
354 subjects.

The proposed algorithm is semi-automatic. The first few pre-processing steps
such as skull stripping and segmentation need manual intervention only to adjust
some parameters using the Brainsuite software tool. The Brainsuite GUI requires
only a few parameter modifications per subject for skull stripping. These adjust-
ments typically require 30 seconds of time, however, roughly 45 subjects required
15 minutes of parameter selection to remove the entire scalp. The subject reg-
istration is batch scripted in DRAMMS and thus completely automatic. The
remaining steps including per slice analysis of the segmented tissues, feature
extraction, and classification are all automated as well. Overall, the proposed
pipeline takes about 30 minutes per subject.

4 Classification performance

An MR image of a subject’s brain is a 3D volumetric data consisting of 128
slices. Following Eq. (1), each feature value represents the ratio of a pair of tis-
sue content in each slice. From pattern recognition perspective, not all slices
may contain discriminatory information that may be useful for 3-class classifica-
tion. There may be slices with redundant or irrelevant information, which may
introduce ambiguity in different class boundaries under classification. Following
a trial and error step, 46 slices from slice index 25 to 70 for each subject MR
data are found to be the most effective set of slices for the proposed 3-class clas-
sification. Figure 2 shows the range of the slices in the 3D volume. Fig. 2 shows
that the slices containing relevant subcortical areas such as hippocampus plays
major role in the proposed classification scheme.

The features proposed in Section 2.2.2 are extracted and used from these 46
slices. For each type of feature, there are 46 attributes per subject. Therefore,
for 30 subjects in the given training data set, the training data dimension is 30
by 46. 3-class classification is performed by training 3 possible binary classifiers.
Results from these binary classifiers are combined to yield the final multi-class
classification result. A 10-fold cross-validation is performed to evaluate the per-
formance of our proposed features in classifying 3-class MR images of brain.
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Fig. 2. Location of the cross-sectional slices used for classification.

Before testing a fold of data, the binary classifiers are trained by the remaining
9-fold data. The final 10-fold classification accuracy is obtained by averaging the
accuracy from 10 individual folds of test data.

Table 1 shows the confusion matrix after 10-fold cross-validation usingWM/CSF
feature and SVM with RBF kernel (SVM-RBF) classifier. Note that all the AD
and CN classes are correctly classified. However, MCI class is mostly confused
with CN class. The 10-fold cross-validation result shows 80% classification accu-
racy wherein 24 out of 30 samples are correctly classified in multi-class classifica-
tion. Table 2 shows area under the ROC curve for 3 different classes and different
classifiers . For classification, an SVM-RBF classifier is found to yield the best

Classified As –> AD MCI CN

AD 9 0 0

MCI 1 3 5

CN 0 0 12

Table 1. Confusion matrix for training data set after 10-fold cross-validation.

classification accuracy. Out of five different features, we find that (WM/CSF)
feature performs the best in classifying 3 classes. Therefore, we consider the same
SVM-RBF classifier and WM/CSF feature to classify the test data set.

The absolute proportion of WM, GM, and CSF yields poor classification ac-
curacy. This is understandable, since different subjects are likely to have different
proportion of tissues regardless of their cognitive status. Therefore, to have a rep-
resentative feature for a cognitive status regardless of the subject, the ratio of
different tissues within a subject can be a subject independent attribute. Since
subjects with cognitive impairment suffer atrophy in WM or GM with expan-
sion in CSF region, a ratio between WM or GM with CSF can be representative
feature for such classification. This is supported by our results shown above,

MICCAI 2014 - Challenge on Computer-Aided Diagnosis of Dementia Based on Structural MRI Data

35



Classifier AD MCI CN Average

SVM-RBF 0.976 0.762 0.861 0.866

SVM-Poly 0.881 0.574 0.88 0.788

Random Forest 0868 0.624 0.861 0.792

Table 2. Area under the ROC curve for each class

which reveals a significant improvement in the classification performance using
(WM/CSF) feature.

5 Conclusion

We eagerly await the classification accuracy of the testing data set, so that con-
clusions can be made on the performance of this proposed approach. The classi-
fication accuracy also depends on the success and consistency in pre-processing
steps as well as on the training data size. Furthermore, the relatively poor clas-
sification between MCI and CN is due to the subtle differences between these
two groups. We believe that a larger training data set will yield an improved
performance in the classifying the test samples of MR images from 354 subjects.
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Abstract. Structural MRI is an important imaging biomarker in Alzheimer’s 
disease as the cerebral atrophy has been shown to closely correlate with cogni-
tive symptoms. Recognizing this, numerous methods have been developed for 
quantifying the disease related atrophy from MRI over the past decades. Special 
effort has been dedicated to separate AD related modifications from normal ag-
ing for the purpose of early detection and prediction. Several groups have re-
ported promising results using automatic methods; however, it is very difficult 
to compare these methods due to varying cohorts and different validation 
frameworks. To address this issue, the public challenge on Computer-Aided Di-
agnosis of Dementia based on structural MRI data (CADDementia) was pro-
posed. The challenge calls for accurate classification of 354 MRI scans collect-
ed among AD patients, subjects with mild cognitive impairment and cognitively 
normal control. The true diagnosis is hidden from the participating groups, thus 
making the validation truly objective. This paper describes our proposed meth-
od to automatically classify the challenge data along with a validation on 30 
scans with known diagnosis also provided for the challenge. 

1 Introduction 

Neuronal injury is an important component of the pathophysiological process in-
volved in Alzheimer’s disease (AD). The cerebral atrophy resulting from the progres-
sive neurodegeneration can be measured using magnetic resonance imaging (MRI) 
and is currently among the most important biomarkers of AD [1]. Optimizing such 
MRI-based biomarkers for detection and prediction of AD may have a significant 
impact on early diagnosis of patients as well as being valuable tools when designing 
therapeutic studies of individuals at risk of AD to prevent or alter the progression of 
the disease. 

Hippocampal atrophy has long been recognized as an early feature of the degenera-
tive process involved in AD [2]. Reductions in hippocampal volume appear to be 
correlated to early memory decline [3]. While sensitive to first stage of AD, hippo-
campal degeneration is involved in other dementias, such as vascular dementia [4], 
and is known to be part of non-pathological brain aging [5]. Thus, volumetric meas-
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urements of the hippocampus (HC) might be limited in their ability to predict the 
progression of AD [6-9]. Evidence suggests that the nature of degeneration in the HC 
and surrounding structures, such as the entorhinal cortex (ERC) and parahippocampal 
gyrus, is different in AD compared to other dementias and different from the changes 
occurring during normal aging [10]. We recently obtained results that support this 
finding since we showed that AD detection could be improved by considering the 
structural composition of the HC and its surrounding structures in the medial temporal 
lobe [8]. These results were obtained using a novel concept of measuring structural 
similarities, comparing the anatomy of a test subject to a library of AD patients and 
cognitive normal (CN) subjects. 

Studies have shown that, apart from hippocampal and medial temporal lobe (MTL) 
atrophy, AD has a characteristic neocortical atrophy pattern [11, 12]. Cortical thin-
ning of temporal and parietal lobe regions, the posterior cingulate and the precuneus 
seem to be involved at early stages of the disease [13]. In the advanced stages of the 
disease, atrophy spreads to almost the entire cortex sparing only the sensory-motor 
and visual cortex [14]. Recently, we showed [15] that if cortical thickness is measured 
in a consistent manner, patterns of cortical thinning can predict conversion to AD 
among mild cognitive impaired (MCI) subjects with higher accuracy. 

In the current challenge the aim is to classify morphological MRI scans into the 
classes: AD, MCI and CN. For this purpose we propose to combine measurements of 
structural pathological patterns, measured by analyzing morphological alterations in 
key structures of the MTL with degenerative patterns of the neocortex, measured by 
cortical thickness. 

2 Methods 

2.1 Image data 

Data used in the preparation of this article were obtained from the ADNI database 
(http://adni.loni.usc.edu/) and from the public challenge on Computer-Aided Diagno-
sis of Dementia based on structural MRI data (CADDementia, 
http://caddementia.grand-challenge.org/). The ADNI database contains 1.5T and 3.0T 
T1w MRI scans for AD, MCI, and CN at several time points. For this study we used 
cohorts with 1.5T scans from the ADNI1 study and separate cohorts with 3.0T images 
from the ADNI2 study (see Table 1 for cohort statistics). The CADDementia data 
consist exclusively of 3.0T T1w MRI scans from three different sites in Europe. It 
should be noted that scanner equipment and protocols are not harmonized between the 
sites, which gives rise to additional variation in the data. In total 384 scans are provid-
ed of which 30 scans have known labels (Table 1). The remaining 354 scans are used 
for evaluating the proposed classification methods in a completely blinded fashion. 
The authors do not have access to the diagnostic labels behind the test scans. 
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Table 1. Demographics of the datasets used in the analyses. 

Dataset N (females) Age±sd 

ADNI1 AD 181 (88) 75.3±7.5 

ADNI1 MCI 381 (139) 74.8±7.4 

ADNI1 CN 222 (105) 75.9±5.0 

ADNI2 AD 48 (16) 75.6±8.8 

ADNI2 MCI 183 (69) 71.7±7.6 

ADNI2 CN 73 (36) 75.6±6.2 

CAD AD 9 (6) 66.1±5.2 

CAD MCI 9 (4) 68.0±8.5 

CAD CN 12 (3) 62.3±6.3 

CAD test set 354 (141) 65.1±7.8 

2.2 Image preprocessing 

All images were processed using a fully automatic pipeline [16]. Images were de-
noised [17] using a Rician-adapted noise estimation [18], bias field corrected [19], 
and registered to MNI space using a 12 parameter affine transformation [20]. To ena-
ble robust registrations we used as registration target a population-specific template 
derived from the ADNI1 database constructed using a series of linear and non-linear 
registrations as described in [21]. The custom template was created from 50 AD pa-
tients and 50 CN subjects randomly selected. This template better reflects the anato-
my of ADNI data compared to the conventional ICBM template build from young 
healthy adults. Image intensities were normalized to match the intensity profile of the 
template [22], and finally the images were skull stripped using BEaST [23]. 

2.3 Hippocampus and entorhinal cortex  

Structural features of the hippocampal complex were estimated using SNIPE 
(Scoring by Nonlocal Image Patch Estimator) method [8, 24]. In this technique, the 
local structural information surrounding each voxel (i.e., 3D patch) of a test subject is 
compared to those in a training library of MRI datasets from ADNI1 and ADNI2 AD 
and CN subjects with segmentation of the considered structures (HC and ERC). In 
short, a small patch of MRI data around each voxel (e.g., 7x7x7 voxel patches) from 
the test subject is compared to the training library with the goal to find similar patch-
es. The patch similarity is used to compute a weight for the match and used to deter-
mine two type of information. First, the weights are used to perform segmentation of 
both considered structures using label fusion strategy [25]. Second, the weights are 
used to obtain grading values reflecting the proximity of the current patch to both 
training populations (e.g., CN and AD) (see [24] for more details). As proposed in 
[24], the 50 closest subjects were first selected from each training population (i.e., 50 
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AD1 and 50 CN) using SSD over an initialization mask. Then, the grading maps and 
the segmentations of the considered structures were obtained simultaneously using 
SNIPE. The ADNI1 and ADNI2 data were graded in a leave-one-out fashion, while 
the CADDementia data were graded using the entire ADNI1 and ADNI2 library. Fi-
nally, the 8 SNIPE-based features extracted were the average grading value over the 
left and right HC and ERC and the volume of the same four structures. Volumes were 
calculated in normalized space (MNI space). 

2.4 Neocortex 

Cortical thickness was calculated using FACE (Fast Accurate Cortex Extraction) 
[26-28] and mapped to the cortical surface of the population-specific average non-
linear anatomical template [21] using an iterative, feature-based algorithm [29]. MCI 
and CN subjects were used to generate a statistical map of group differences in corti-
cal thickness. From this t-map, cortical thickness features were derived with the pro-
cedure described in [15] using the proportion of the cortical surface with the 15% 
largest t-values corresponding to a threshold of t=4.3 and t=1.0 for ADNI1 and 
ADNI2 respectively (see Figure 1). In brief, candidate ROIs were calculated using a 
multi-seed constrained surface based region growing algorithm initialized at local 
maxima of the 15% t-map. In [15] we found a cortical area of 10-15% to be suitable 
for searching for candidate ROIs. We used MCI/CN contrast to generate cortical fea-
tures as opposed to the more conventional AD/CN contrast. This was to enable sensi-
tivity to the three-way classification problem, acknowledging that the MCI classifica-
tion is the most difficult task. A total of 90 cortical thickness ROIs were identified 
this way using ADNI1 data and 87 using ADNI2 (see Figure 2). Neocortical features 
comprised the mean cortical thickness within each of these ROIs measured in subject 
native space. 

2.5 Classification 

We used multinomial regression with lasso and L1/L2 elasticnet regularization for 
the classification. We applied the GLMNET matlab implementation for the purpose 
(http://www.stanford.edu/~hastie/glmnet_matlab/). During experiments we used 
ADNI1 or ADNI2 as training datasets. The proposed classification framework was 
based on ensemble learning approach [30]. In order to create the ensemble we used an 
iterative approach. For each iteration the following steps were performed:  

 
1. Age correction based on the CN ADNI training population  
As in [31], for each feature we estimated the age-related effect on the CN pop-
ulation using linear regression. The features for all the considered groups 
(ADNI and CAD groups) were then corrected using the estimated linear re-
gression coefficients. 

                                                           
1  For ADNI2 only 48 AD images were used in the segmentation and grading process.  
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2. Under-sampling and Over-sampling of the ADNI training dataset 
In presence of imbalanced population sizes, the evaluation of the performance 
of classification algorithms might be biased [32]. Therefore, in this study, we 
used two different strategies to compensate for this bias. We first randomly 
under-sample majority classes (i.e., CN and MCI) to obtain similar number of 
subjects for the 3 classes. Then we used SMOTE (Synthetic Minority Over-
sampling Technique) to increase the number of samples in each classes. 
SMOTE creates new synthetic samples by performing interpolation of the 
nearby neighbors in the feature space 
 
3. Grid search for optimal classifier parameters 
In order to estimate the optimal parameters of the classifier, we performed a 
grid search using the CAD training dataset. When the accuracy of the classifi-
cation was balanced between the 3 classes of CAD training dataset and higher 
than a given threshold, the model was applied on the CAD test dataset and the 
prediction (i.e., the 3 a posteriori probabilities for all the subjects) was stored 
in the model ensemble. Step 2 and 3 are iteratively performed until 25 good 
models were found. 
 
4. Ensemble learning classification 
Finally, at the end of the iterative process, all the selected models in the en-
semble were fused using a non-weighted strategy. We estimated the mean of 
the 3 a posteriori probabilities for all the subjects over all the selected models. 
The maximum fused a posteriori probabilities were finally used to estimate 
the final label of the CAD test dataset. 
 

This procedure is used in the four following scenarios: 
 

1. Using ADNI1 as training dataset and SNIPE and FACE features (98 fea-
tures in total) 

2. Using ADNI1 as training dataset and SNIPE features (8 features) 
3. Using ADNI2 as training dataset and SNIPE and FACE features (95 fea-

tures in total) 
4. Using ADNI2 as training dataset and SNIPE features (8 features) 

Finally, the four scenarios were combined by using the grand mean of all a posterior 
probabilities from the scenarios. As in step four above, the maximum posterior proba-
bility was used to label the images. 

Using the CADDementia training data (n=30), the correct classification rates of 
each of the three classes (AD/MCI/CN) were calculated for all five scenarios. 

MICCAI 2014 - Challenge on Computer-Aided Diagnosis of Dementia Based on Structural MRI Data

42



 

 
Fig. 1. Thresholded t-maps for ADNI1 MCI/CN contrast (left) and ADNI2 MCI/CN contrast 
(right). Notice the difference in statistical strength due to sample size differences. 

 
Fig. 2. Cortical thickness ROIs generated by respectively ADNI1 cohorts (left) and ADNI2 
cohorts (right). 
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3 Results 

3.1 Computational time 

The classification process is fully automatic. Using a single core (Intel Core i7 
@3.40Ghz) per subject the total computational time was approximately 55 minutes 
distributed on preprocessing (30 min), FACE (15 min), and SNIPE (10 min). Apply-
ing the classifier after it has been trained takes only a few seconds. 

3.2 CADDementia training set 

The final accuracy of the ensemble classifiers obtained on the CADDementia train-
ing set are presented in Table 2.  

Table 2. Classification accuracies of the five classifiers when applied on CADDementia train-
ing data. All numbers are in percentage (%). 

 Classification accuracy 
Classifier CN MCI AD Overall 
SNIPE/FACE ADNI1 75.0 66.7 66.7 70.0 
SNIPE ADNI1 75.0    77.8 77.8 76.7 
SNIPE/FACE ADNI2 58.3 66.7 77.8 66.7 
SNIPE ADNI2 66.7    66.7    77.8    70.0 
Combined 75.0 66.7 77.8 73.3 

4 Discussion 

The results on the CADDementia training data may be inflated due to the grid 
search for optimal parameters. Nevertheless the results indicate the ranking of the 
different classifiers. It seems that training on ADNI1 data provides better results than 
training on ADNI2 data even though ADNI2 data should better represent the 
CADDementia data using only 3T images. The difference is most likely due to more 
available training data in the ADNI1 cohorts leading to well-defined classes. Thus the 
morphological variation of the three populations (AD/MCI/CN) is better represented 
in the larger sample. Adding cortical thickness features to the SNIPE features does 
not seem to improve results. In fact, it seems to impair the classifiers, possibly due to 
adding noise. Perhaps fewer and more carefully selected ROIs in the neocortex would 
have better complemented the MTL features and thus added discriminative infor-
mation. Combining the four classifiers does not increase accuracy. 

The AD group has consistently the highest (or tied with the highest) classification 
accuracy across all five classifiers. As expected the main difficulty in the three-way 
classification problem is to separate CNs and MCIs. A different strategy could have 
been to primarily focus on this problem by combining binary classifiers with the idea 
of “one class against all” applied in succession. 
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Looking at the demographics there is a significant age difference between ADNI 
and CADDementia data. We addressed this issue by adjusting the features for linear 
age effects using the ADNI CN subjects. However, this may not sufficiently compen-
sate for the age differences between the cohorts. Due to aging effects, such as demye-
lination of the brain tissues, the MRI signal is not independent of subject age. Thus 
features based on image intensity and texture, such as the SNIPE features, are affected 
by these properties of the MR signal. Cortical thickness estimates are also affected, 
however, most likely to a lesser extent. Similarly, differences in field strength be-
tween training and testing data will affect the classifier performance. 

The sample size of the CADDementia training data is too small to be representa-
tive of the large morphological variation typically found in demented as well as 
healthy brains. Thus training on a separate dataset, in our case ADNI data, is absolute-
ly necessary to obtain a well-balanced and unbiased classifier. When the underlying 
labels of the CADDementia testing data is revealed, we will know whether our strate-
gy using ADNI data was the right choice. 
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Abstract. Early identification of neuroanatomical changes deviating from the normal age-
related atrophy pattern has the potential to improve clinical outcomes through early treatment or 
prophylaxis. Especially the pathological cascade of Alzheimer’s disease (AD), the most common 
form of dementia, is widely linked to precocious and/or accelerated (brain) aging. 

This work presents a novel magnetic resonance imaging (MRI)-based biomarker that indicates 
discrepancies in individual brain aging. By employing automatic preprocessing of structural MR 
images as well as high-dimensional pattern recognition methods, this approach uses the 
distribution of normal brain-aging patterns to estimate the individual brain age of a given new 
subject. The difference between the estimated brain age and the chronological age gives an 
individual deviation score, with positive values indicating the degree of acceleration in cerebral 
atrophy, which is considered a risk factor for AD. Here, this deviation score is used to classify the 
subjects as NO, MCI, and AD. 

Keywords: MRI, relevance vector machines (RVM), support vector machines (SVM), regression, 
aging, brain disease 

1 Introduction 

The global prevalence of dementia is projected to rise sharply over the coming decades. By 2050, 1 
in 85 persons worldwide will be affected by Alzheimer’s disease (AD), the most common form of 
dementia (Brookmeyer et al. 2007). Manifold pathological changes begin to develop years or decades 
before the onset of cognitive decline (Jack et al. 2010), including premature changes in gene expression 
(Cao et al. 2010; Saetre et al. 2011), accelerated age-associated changes of the default mode network 
(Jones et al. 2011), and most obviously, abnormal changes in brain structures already at the mild 
cognitive impairment (MCI) stage (Driscoll et al. 2009; Spulber et al. 2010). Additionally, atrophic 
regions detected in AD patients were recently found to largely overlap with those regions showing a 
normal age-related decline in healthy control subjects (Dukart et al. 2011).  

Early detection and quantification of abnormal brain changes is important for the prospective 
identification and subsequent treatment of individuals at risk for cognitive decline and dementia. At 
some point in the AD disease course accelerated neurodegeneration takes place, preceding accelerated 
cognitive decline (Jack et al. 2010). Although brain atrophy in general is not specific for AD, MRI-
detected atrophy was found to retain the closest relationship with cognitive decline (Jack et al. 2010; 
Vemuri et al. 2009a, b) suggesting a crucial role for structural MRI in predicting future conversion to 
AD (Frisoni et al. 2010; Jack et al. 2010). 

Assuming AD to be preceded by precocious and/or accelerated brain aging (Bartzokis 2011; 
Driscoll et al. 2009; Spulber et al. 2010), a straightforward and efficient solution is to model healthy 
aging on the one hand, and to identify accelerated (thus pathological) brain atrophy on the other. 
Consequently, in order to recognize faster brain atrophy, a model of healthy and normal brain aging is 
needed. A straightforward and efficient solution is to model age regression based on normal brain 
anatomy, such that an individual’s brain age can be accurately estimated from his/her brain scan alone. 

The approach presented here takes into account the widespread but sequential age-related brain 
tissue loss. Based on single time-point structural MRI the complex, multidimensional aging patterns 
across the whole brain are aggregated to one single value, i.e. the estimated brain age. Consequently, 
although using only a standard MRI scan, the deviation in brain atrophy from normal brain aging can 
be directly quantified.  
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2 Methods 

2.1 Subjects/Database 

To train the age estimation framework, MRI data from the publicly accessible IXI cohort 
(http://www.brain-development.org) were used. In September 2011, the IXI database contained T1-
weighted images from 561 healthy subjects [250 male] aged 20-86 years [mean (SD) = 48.6 (16.5) 
years], which were collected on three different scanners (Philips 1.5T, General Electric 1.5T, Philips 
3T). The distributions of age and gender within the training sample are shown in Figure 1. Table 1 
shows the characteristics of the CAD Dementia training and test samples. 

 

 
Figure 1: Age distribution in the male (left) and female (right) IXI sample used for modeling normal brain aging. 

Table 1: Characteristics of the subjects in the CAD Dementia training and test samples. 

CAD Dementia train sample test sample 
 male female male female 
No. subjects 17 13 213 141 
Age mean (SD) 64.2 (6.7) 66.5 (7.4) 65.7 (7.4) 64.2 (8.3) 
Age range 54 – 79 57 – 80 49 – 88 46-88 
No. NO subjects 9 3 - - 
No. MCI subjects 5 4 - - 
No. AD subjects 3 6 - - 

2.2 Preprocessing of MRI data and data reduction 

Preprocessing of the T1-weighted images was done using the SPM8 package 
(http://www.fil.ion.ucl.ac.uk/spm) and the VBM8 toolbox (http://dbm.neuro.uni-jena.de), running 
under MATLAB. All T1-weighted images were corrected for bias-field inhomogeneities, then spatially 
normalized and segmented into gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF) 
within the same generative model (Ashburner and Friston 2005). The segmentation procedure was 
extended by accounting for partial volume effects (Tohka et al. 2004), by applying adaptive maximum 
a posteriori estimations (Rajapakse et al. 1997), and by using a hidden Markov random field model 
(Cuadra et al. 2005; Gaser 2009). The images were processed with affine registration and smoothed 
with (i) 4-mm full-width-at-half-maximum (FWHW) or (ii) 8-mm FWHW smoothing kernels. Spatial 
resolution was set to (i) 4 mm or (ii) 8 mm, respectively. For further data reduction, principal 
component analysis (PCA) was performed on the training sample with subsequently applying the 
estimated transformation parameters to the test sample. PCA was done using the ‘Matlab Toolbox for 
Dimensionality Reduction’ (http://ict.ewi.tudelft.nl/~lvandermaaten/Home.html).  
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2.3 Relevance vector regression (RVR) 

To capture the complex, multidimensional aging pattern across the whole brain, the brain age 
estimation framework utilizes relevance vector regression (RVR; Tipping, 2001). Relevance vector 
machines (RVM) were introduced as a Bayesian alternative to support vector machines (SVM) for 
obtaining sparse solutions to pattern recognition tasks. The main idea behind SVMs is the 
transformation of training data from input space into high-dimensional space – the feature space – via a 
mapping function Φ (Bennett and Campbell 2003; Schölkopf and Smola 2002). For the purpose of 
classification, the hyperplane that best separates the groups is computed within this feature space, 
resulting in a nonlinear decision boundary within the input space. The best separating hyperplane is 
found by maximizing the margin between the two groups. The data points lying on the margin 
boundaries are called support vectors since only these are used to specify the optimal separating 
hyperplane. For the case of real-valued output functions (rather than just binary outputs as used in 
classification), the SV algorithm was generalized to regression estimation (Bennett and Campbell 
2003; Schölkopf and Smola 2002). In support vector regression (SVR), a function has to be found that 
fits as many data points as possible. Analogous to the margin in classification, the regression line is 
surrounded by a tube. Data points lying within that tube do not influence the course of the regression 
line. Data points lying on the edge or outside that tube are called support vectors.  

In contrast to the support vectors in SVM, the relevance vectors in RVM represent the prototypical 
examples within the specified classification or regression task, instead of solely representing separating 
attributes. Furthermore, severe overfitting associated with the maximum likelihood estimation of the 
model parameters was avoided by imposing an explicit zero-mean Gaussian prior (Ghosh and 
Mujumdar 2008; Zheng et al. 2008). This prior is a characteristic feature of the RVM, and its use 
results in a vector of independent hyperparameters that reduces the data set (Faul and Tipping 2002; 
Tipping 2000; Tipping 2001; Tipping and Faul 2003). Therefore, in most cases the number of 
relevance vectors is much smaller than the number of support vectors. Furthermore, in SVR additional 
parameters have to be determined or statistically optimized (e.g. with cross-validation loops) in order to 
control for model complexity and model fit. To control the behavior of the RVR, only the type of 
kernel has to be chosen, whereas all other parameters are automatically estimated by the learning 
procedure itself. More details can be found in (Bishop 2006; Schölkopf and Smola 2002; Tipping 
2000). 

2.4 Brain age estimation framework 

The brain age estimation framework utilizes RVR to capture the complex, multidimensional aging 
pattern across the whole brain and to subsequently estimate individual brain ages based on T1-
weighted images. As suggested in Franke et al. (2010), the kernel was chosen to be a polynomial of 
degree 1, since age estimation accuracy was shown to not improve when choosing non-linear kernels. 
Thus, parameter optimization during the training procedure was not necessary.  

In general, the model is trained with preprocessed whole brain structural MRI data (as described in 
2.2) of the training sample, resulting in a complex model of healthy brain aging (Figure 2A, left panel). 
Put in other words, the algorithm uses those whole-brain MRI data from the training sample that 
represent the prototypical examples within the specified regression task (i.e., healthy brain aging). 
Additionally, voxel-specific weights are calculated that represent the importance of each voxel within 
the specified regression task (i.e., healthy brain aging). For an illustration of the most important 
features (i.e., the importance of voxel locations for regression with age) that were used by the RVR to 
model normal brain aging and more detailed information please refer to Franke et al. (2010).  

Subsequently, the brain age of a test subject can be estimated using the individual tissue-classified 
MRI data, aggregating the complex, multidimensional aging pattern across the whole brain into one 
single value (Figure 2A, right panel). In other words, all the voxels of the test subject’s MRI data are 
weighted by applying the voxel-specific weighting matrix. Then, the brain age is calculated by 
applying the regression pattern of healthy brain aging and aggregating all voxel-wise information 
across the whole brain. The difference between estimated brain age and the true chronological age will 
reveal an individual deviation score. Consequently, this deviation score directly quantifies the amount 
of acceleration or deceleration in individual brain aging (Figure 2B). For example, if a 70 years old 
individual has a deviation score of +5 years, this means that this individual shows the typical atrophy 
pattern of a 75 years old individual. To compute the final age regression model as well as to predict the 
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individual brain ages, we used the freely available toolbox “The Spider” 
(http://www.kyb.mpg.de/bs/people/spider/main.html).  

 
Figure 2. (A) The model of healthy brain aging is trained with the chronological age and preprocessed structural 

MRI data of a training sample (left; with an exemplary illustration of the most important voxel locations that were 
used by the age regression model). Subsequently, the individual brain ages of previously unseen test subjects are 

estimated, based on their MRI data (blue; picture modified from Schölkopf and Smola (2002)). (B) The difference 
between the estimated and chronological age results in the deviation (i.e., BrainAGE) score. Consequently, 

positive deviation scores indicate accelerated brain aging. (Image reproduced from Franke et al. (2012), with 
permission from Hogrefe Publishing, Bern). 

The age estimation model was separately trained on male and female subjects in the IXI training 
sample. Furthermore it was trained using (i) preprocessed GM images, (ii) preprocessed WM images, 
and (iii) the linear combination of preprocessed GM and WM images. Subsequently, the brain ages of 
the subjects in the CAD Dementia training and test samples were estimated based on their non-
uniformity corrected (nuc) MRI data. The difference between the estimated and the true age resulted in 
(i) GM, (ii) WM, and (iii) GMWM deviation scores, respectively. Sample-specific set-offs and slopes 
were corrected for the whole CAD Dementia sample using linear regression. The whole brain age 
estimation framework works automatically. All data preprocessing, model training, and brain age 
estimation was done using MATLAB. 

2.5 Classification based on brain age estimation 

Classification of the CAD Dementia subjects is based on the individual deviation scores. To explore 
the best classification accuracies in the CAD Dementia training sample, the brain age estimation model 
was run with all combinations of parameter variation during preprocessing (i.e. 4 mm & 8 mm FWHM 
smoothing kernel) and segmented brain tissue (i.e., GM, WM & GMWM). Subsequently, in each of 
those six brain age models two linear thresholds (i.e., NO vs. MCI and MCI vs. AD) were searched for 
to classify the subjects as NO, MCI, or AD based on individual deviation scores. Accuracy rates and 
receiver operating characteristics (ROC) for two-class classifications (i.e., NO vs. MCI, NO vs. AD, 
MCI vs. AD) were computed in the CAD Dementia training sample, resulting in the area under the 
ROC curve (AUC). Based on these results, the final brain age estimation models for classification were 
chosen. To differentiate between NO vs. MCI and MCI vs. AD the model using the linear combination 
of preprocessed GM and WM images with a 4 mm FWHM smoothing kernel showed best 
performances. To further refine the differentiation between NO vs. MCI we additionally used WM 
deviation scores (8 mm FWHM smoothing kernel). Then, overall classification accuracies were 
calculated following (Hand and Till 2001), as recommended in the CAD Dementia challenge rules. 
Subsequently, the final thresholds that reveal the highest overall classification accuracies in the CAD 
Dementia training sample were applied to classify the CAD Dementia test subjects. 

3 Results 

3.1 Performance of the age estimation model 

To analyze the performance of the specific models used for training of the typical age patterns in 
healthy subjects, leave-one-out was used in the IXI training sample. For the GMWM age estimation 
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model (with 4 mm FWHM smoothing kernel) the correlation between estimated brain age and 
chronological age was r = 0.92 in the male [n= 250; mean (SD) age: 46.8 (16.4) years] as well as in the 
female subsample [n= 311; mean (SD) age: 48.6 (16.5) years]. The mean absolute error (MAE) was 5.1 
years in both subsamples. For the WM age estimation model (with 8 mm FWHM smoothing kernel) 
the correlation between estimated brain age and chronological age was r = 0.88 in the male and r = 0.90 
in the female subsample. The MAE in the male subsample was 6.4 years and 5.8 years in the female 
subsample. 

3.2 Classification based on brain age estimation in the CAD Dementia training sample 

Overall classification accuracies as calculated following (Hand and Till 2001), was 90% in the CAD 
Dementia training sample. Regarding the GMWM deviation score the thresholds are set at 2.6 to 
differentiate between NO vs. MCI and 4.5 to differentiate between MCI vs. AD. To further refine the 
differentiation between NO vs. MCI an additional threshold was set at -2.9 in the WM deviation score 
(Figure 3). 

Figure 3: Classification scheme for the CAD Dementia training (colored dots) and test subjects (black dots) 
depending on the thresholds in WM and GMWM deviation scores. Subjects in the green area are classified as 

“NO”, subjects in the blue area are classified as “MCI”, and subjects in the red area are classified as “AD”. 

The whole approach is fully automatic. Preprocessing the MRI data (as described in 2.2) takes about 
8 minutes per brain image. The whole process of training the brain age estimation models with about 
560 subjects from the IXI sample, subsequent estimation of the brain ages for all 384 CAD Dementia 
subjects, and final classification of the CAD Dementia training subjects takes about 110 seconds in 
total on MAC OS X, Version 10.5.8, 2.4 GHz Intel Core 2 Duo. 

4 Discussion 

For estimating the brain age from T1-weighted MRI scans, we propose a fast and fully automatic 
framework that includes preprocessing of the images, dimension reduction via PCA, training of a RVM 
for regression with a polynomial kernel of degree 1, and finally estimating the brain age of the CAD 
Dementia subjects. This age estimating framework turns out to be a straightforward method to 
accurately and reliably estimate brain age with as little preprocessing and parameter optimization as 
possible. Using MRI data of about 560 healthy subjects aged between 20 and 86 and scanned on three 
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different scanners, the age estimation with RVR showed excellent performance, with an overall MAE 
of only 5 years and a correlation of r = 0.92 between the chronological and the estimated brain age. 

Using structural MRI data, our fully automated brain age estimation model aggregates the complex, 
multidimensional aging patterns across the whole brain to one single value (i.e. the deviation score) 
and finally identifies subtle pathological brain aging in the CAD Dementia training MCI and AD 
subjects, with increasing deviation scores at indicating an increased risk for AD. 

In conclusion, our brain age estimation framework could potentially help to recognize and indicate 
advanced brain atrophy on an individual level, thus contributing to an early diagnosis of 
neurodegenerative diseases like AD and facilitate early treatment or a preventative intervention.  
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Abstract. Evaluating algorithms for the image-based classification of dementia

on the basis of common data and using common metrics is essential for an ob-

jective comparison of different approaches. It is the aim of the Computer-Aided
Diagnosis of Dementia based on structural MRI data (CADDementia) challenge

to address this need by providing the opportunity of objectively evaluating in-

dividual approaches. In this paper, a classification framework is presented, in

which four different sets of features extracted from structural MR images are ex-

amined with respect to their discriminative abilities. These features are based on

volumetric and morphologic parameters, image intensities and patch similarities.

Moreover, a combined feature set is employed to analyse the amount of comple-

mentary information contained in the features. For the three-class classification

problem – Alzheimer’s Disease (AD) vs. Mild Cognitive Impairment (MCI) vs.

Control (CN) – a classification rate on a subset of the ADNI1-2 databases be-

tween 51% and 59% is achieved with all five feature sets. The combined feature

set leveraging the potential of all four methods leads to only a minor improvement

over the individual sets.

1 Introduction

The Computer-Aided Diagnosis of Dementia based on structural MRI data (CADDe-

mentia) challenge [1] is aimed at evaluating different methods for the image-based di-

agnosis of dementia. Held in the course of the MICCAI 2014 conference, the challenge

provides a standardised platform for objectively testing different approaches on a com-

mon set of image data, which allows an objective comparison.

A crucial aspect of the computer-aided diagnosis based on MRI data is the extraction of

features from the images. These features have to be meaningful for the diagnostic pur-

pose, that means they are designed to contain valuable information about the state and

the progression of the disease. In the case of Alzheimer’s disease, for example, features

proposed in the literature range from concrete and well-known clinical biomarkers like

the hippocampal volume [2] or the cortical thickness [3] to abstract parameters derived

directly from the image intensities by manifold learning approaches [4].

In this contribution, we aim at comparing different feature extraction methods that have
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all been shown to be of high potential for the differential diagnosis of Alzheimer’s dis-

ease and related forms of dementia. These features comprise:

– Volumetric features (VOL): A total of 134 distinct brain volumes are automati-

cally segmented (see Sec. 3.1).

– Morphologic features (CORT): Based on the brain segmentations, morphological

features such as cortical thickness and cortical surface measurements are computed

(see Sec. 3.2).

– Manifold-based learning features (MBL): Manifold-based learning is used to

map intensity texture descriptors of all subjects into a d-dimensional space, such

that similarities between the images are maintained. The d coordinates of this space

(or a subset of them) are then considered as features (see Sec. 3.3).

– Patch-based grading features (GRAD): A patch-based approach is employed to

find similar intensity patterns in scans of other subjects. Features are then computed

as the weighted average of the labels associated with similar patches (see Sec. 3.4).

The special focus of this work is on A) comparing the performance of the features on

a set of unseen image data provided by the CADDementia challenge, and B) assessing

the degree of complementary information contained in the feature sets. Therefore, as

well as analysing the four groups of features independently, a joint feature set (ALL) is

tested that combines all available features.

For classification, Random Forests were employed consistently in all experiments as

they have been shown to be powerful in particular for multi-class classification [5] (see

Sec. 4). They were trained on the Alzheimer’s Disease Neuroimaging Initiative (ADNI)

[6] database using the five different feature sets and the classification results were sub-

mitted to the CADDementia challenge.

In Sec. 5, classification results for a 10-fold cross validation on the ADNI database and

for the classification of the 30 training cases hosted by the CADDementia challenge are

additionally provided. These experiments showed that a high performance of all feature

sets for the classification of the Alzheimer’s disease state, with three-class classification

accuracies ranging between 51% and 59% for the cross validation. The intensity based

features MBL and GRAD slightly outperformed the other features. Only a small im-

provement was reached with the combined feature set, which suggests that the amount

of complementary information contained in the features is limited.

2 CADDementia data and common preprocessing

The challenge data is comprised of 30 plus 354 T1-weighted images for training and

testing data respectively. The images were acquired at three different sites at 3T mag-

netic field strength. More details can be found at [1]. Both training and testing data

were preprocessed using the same pipeline. All T1-weighted MR scans with in-place

resolution below 0.5 mm were resampled and their in-plane resolution doubled. The im-

ages were further corrected for potential intensity inhomogeneities employing the N4

algorithm [7]. Brain masks were then calculated for both training and testing images us-

ing pincram [8]. As atlas database for pincram, 64 subjects of the ADNI1 cohort were
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chosen. After visual inspection ≈ 10% of the brain masks for the CADDementia test-

ing dataset did not meet our quality criterion. An updated pincram version was rerun

on these subjects adding 3T scans from the ADNI2 study as well as successfully ex-

tracted subjects from the CADDementia training set to the atlas database. The extended

database lead to an improved segmentation quality sufficient for a further analysis, such

that no manual editing was required. It was observed that scans acquired at EMC Rot-

terdam were particularly challenging to extract.

3 Feature Extraction

In the following we present four approaches to extract biomarkers that have been shown

to have potential for Alzheimer’s disease state classification. The focus is on providing

a brief description of the individual approaches and how they are applied. For further

details we refer to the papers describing the whole brain segmentation approach (VOL,

[9]), the cortical thickness measurement (CORT, [10]), the extraction of intensity fea-

tures (MBL, [11]) and the calculation of patch-based grading values (GRAD, [12]).

3.1 Volumetric features from multi-structure whole brain segmentation (VOL)

Training data To automatically parcellate the provided MR scans into anatomical re-

gions, the 30 brain atlases (excluding repeat scans) provided through the “MICCAI

Grand Challenge on Multi-Atlas Labeling 2012” [13] were employed. This atlas database

consists of 30 T1-weighted MR scans from the OASIS database that were annotated by

expert raters1 into 134 distinct brain regions.

Method description We employed the multi-atlas label propagation method described

in [9]. In this approach, all 30 brain atlases are aligned to an unsegmented subject MRI

using a robust nonrigid registration approach based on multi-level free form deforma-

tions [14–16]. The individual atlas label maps are then transformed to the image space

of the unsegmented image using the calculated transformation and a nearest neighbour

interpolation scheme. The 30 propagated atlas label maps are fused into a consensus

probabilistic segmentation using a local weighting approach. The obtained probabilis-

tic segmentation is further refined using a method that exploits image intensities in an

expectation maximisation framework [9]. For each subject we finally extract 135 volu-

metric features, including background, based on the segmentations.

3.2 Cortical morphology features (CORT)

Training data Measurements of cortical morphology were obtained based on the seg-

mented regions of the cortex. Cortical surface area, curvature and thickness features

were calculated for the whole cortex and its 98 regional subdivisions (in total 591 fea-

tures).

1 provided by Neuromorphometrics, Inc. (http://Neuromorphometrics.com/) under academic

subscription.
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Cortical thickness estimation Cortical thickness was estimated as described in [10].

In this approach, a potential field from the GM-WM to the GM-CSF interface is de-

termined by solving the Laplace’s equation. Voxel-wise thickness was then calculated

as the sum of the voxel’s distance to the WM and to the CSF, following the direction

perpendicular to the potential field. Cortical sulci correction was performed similarly to

[17]. We calculated cortical thickness (mean and standard deviation) for each cortical

region (98+98 features).

Cortical surface measurements Cortical surface meshes were obtained by triangula-

tion of the CGM-WM isosurface of each hemisphere with the marching cubes algorithm

[18]. The surfaces were smoothed with Laplacian smoothing [19] for an even distribu-

tion of the mesh vertices. An example cortical surface is presented in Figure 1.

Fig. 1: Cortical surface of the CGM-WM interface with overlaid segmentation.

Surface area and curvature measures of the cortex were computed from the meshes. We

adopted a number of area-independent curvature measures from [20] with T-normali-

sation that are not sensitive to the surface area. The surface measures included in this

study were: surface area in the whole cortex and each region (1+98), relative surface

area (98), mean curvature L2 norm (1+98) and Gaussian curvature L2 norm (1+98).

3.3 Manifold-based learning for multi-level variable selection (MBL)

Training data Data used was obtained from the ADNI database. In this work, a subset

of 292 ADNI-1 subjects with baseline 1.5T MR images and that did not have 1.5T

MR images available at 12 or 24 month follow-up, were used for training a multilevel

variable selection scheme based on sparsity. The remaining 1.5T and 3T ADNI-1, -

GO and -2 baseline images (as of November 2013) were used to evaluate and tune the

proposed framework. In total 1701 images were used, from which 292 were used for

multilevel variable selection and 1409 for evaluation and tuning.

Multilevel relevant variable selection The goal of variable selection is to reduce the

amount of input variables to those that are relevant for a specific task. In this work a

sparse regression was used in a similar fashion as the method described in [11] to select
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relevant variables. Here, independent variables are the MR image intensities, while the

mini mental state examination (MMSE) score acts as dependent variable [11]. Further-

more, as disease specific imaging characteristics might manifest at different alignment

levels, each of the N subjects has associated R images that have been created by align-

ing the original scan to the MNI152 template at R different levels using [15]. A matrix

X is built, where each column represents a location in MNI space at a certain alignment

level. Each row in matrix X represents a subject n ∈ N via concatenating its vectorised

MR images at multiple levels r ∈ R. The algorithm then selects a subset of D variables

from X, that correspond to column indices of X. This yields a 4D mask, where the first

three dimensions are coordinates in MNI space and the fourth is the alignment level of

the image to the template.

Local binary patterns MR images acquired using different acquisition protocols have

different intensity appearance and thus cannot be easily combined into a single frame-

work. In this work we extract local binary patterns (LBP) [21] around the 26-connected

neighbourhood of each selected voxel and encode them as binary vectors. This trans-

forms MR intensity features to an augmented binary space where the images lie in the

same space and thus can be combined, assuming that the original acquisitions protocols

are reasonably similar (e.g. both are T1-weighted).

Dimensionality reduction The aim of this work is to produce a three-class classi-

fier. For this purpose, it was found in [11] that the learned 4D mask is still relatively

high-dimensional and that reducing the dimensionality generally improves classifica-

tion results. In this work principal component analysis (PCA) [22] was used to reduce

the dimensionality of the data.

3.4 Patch-based disease grading features (GRAD)

Training data ADNI baseline scans of 629 subjects (233 CN, 231 MCI, 165 AD) ac-

quired at 3T and 30 training images from the challenge were utilised as training dataset.

For each image, 150 grading features were calculated for classification. Then, an opti-

mised classifier was trained on the training dataset and used to predict the class labels

of the testing images from the challenge.

Method description After preprocessing, non-rigid registration, based on B-spline

free-form deformation [15] with a final control point spacing of 5mm, was performed

to align all images to the MNI152 template space. The intensity was normalised be-

tween each image and the template using the approach proposed in [23]. Then, the

sparse regression method proposed in [24] was used to calculate a probability map for

selecting patches. Finally, 150 patches with the highest probabilities are extracted from

each image for calculating grading features.

A patch-based approach was proposed in [25] to calculate grading features for clas-

sification of AD. Our method is an extension of this method by introducing sparse

representation techniques. To calculate a grading value for each target patch pt , corre-

sponding patches in the training images are extracted to form a training patch library
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PL. The patch library PL typically contains thousands of training patches. The relation-

ship between the target patch pt and the patches in the training library PL is modelled

by a weighting function in [25]. In our work, the Elastic Net sparse regression model

[12] is used to model the relationship between the target patch and the training patches.

Since the pathological status of the training patches are known, we can propagate the

pathological status to the target patch by using the patch relationship. The grading value

of the target patch pt can then be estimated as:⎧⎪⎨
⎪⎩

ât = min
at

1
2 ‖pt −PLat‖2

2 +λ1‖at‖1 +
λ2
2 ‖at‖2

2

gt =
∑N

j=1 ât ( j)s j

∑N
j=1 ât ( j)

(1)

where ât are the coding coefficients for the target patch pt . Most of the coefficients in

ât are zero due to the sparsity constraint. If the coefficient in ât is not zero, it indicates

that the corresponding training patch has been selected to propagate their pathological

information to the target patch. N is the number of the training patches in the patch

library PL. The CN and AD training groups were selected from the training dataset to

propagate pathological status to the target image as suggested in [25]. The pathological

status of the training patch PL( j) is denoted as s j. If the training patch is extracted from

CN subjects, s j is set to 1. s j = −1 is used for patches extracted from AD subjects.

Finally, a grading value gt can be calculated for each target patch pt . Since 150 patches

are extracted from each image, 150 grading features are calculated for classification.

4 Classification based on Random Forests

For all classification experiments, we applied the random forests algorithm [26] imple-

mented in scitkit-learn ([27]; http://scikit-learn.org/). This method is able to predict both

binary labels and class probabilities, and can be directly applied for three-class classifi-

cation. As in the originally proposed algorithm, no maximum tree depth was specified,

and a bootstrap sample of the training data was passed to each tree. Tree nodes were

split based on an entropy criterion, and 100 trees were included in each forest. The num-

ber of features randomly sampled at each tree node was set to
√

n for all experiments,

following the recommendation of Liaw and Wiener [28].

5 Results

5.1 Training data

Features generated by different methods seek to model differences in subgroups in a

distinct way and thus may hold complementary information between each other. In or-

der to asses this, a subset of subjects that overlap for all of the proposed methods was

used for training. Features generated by those methods were combined into a single

classification framework, where if complementary information exists, overall classifi-

cation results would be expected to improve. In total, 734 subjects from the ADNI1-2

datasets where included in this analysis. See Table 1 for the demographics of the data.
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Table 1: Subject groups mean age, sample size, MMSE scores, gender, CDR scores and

Magnetic strength from ADNI1-2.

N Age MMSE Men (#) CDR 1.5T (3T)

AD 170 74.77±7.62 23.12±2.06 46% (78) 0.79±0.27 110 (80)

MCI 288 73.79±7.47 27.28±1.79 55% (158) 0.50±0.00 185 (103)

CN 276 74.75±5.82 29.07±1.16 47% (131) 0.00±0.00 156 (120)

We performed classification experiments in two variations. Firstly, we performed a 10-

fold cross validation approach within this subset of the ADNI database. Secondly, we

trained the random forest classifier using this ADNI subset, and classified the provided

CADDementia training set. The second experiment is the same setup that was used for

calculating the submitted results based on the CADDementia testing data.

For each classification task we employed a random forest classifier that was trained on

five subsets of the available features. We used features provided by each of the four in-

dividual methods (VOL, CORT, MBL, GRAD) as presented in 3.1-3.4. We furthermore

combined all available features (ALL={VOL, CORT, MBL, GRAD}) provided by the

presented methods to investigate whether they provide complementary information. We

did not use available meta information such as age, field strength and gender.

The mean accuracies obtained in the ADNI cross-validation experiment are provided in

Table 2. The mean accuracies obtained by 10 classification runs for the CADDementia

training data are summarised in Table 3.

When using ALL features, we further investigated which features were most informa-

tive by extracting feature importances from the random forest classifier trained for the

three-class classification task. We found that the first manifold coordinate of the MBL

features was most important. Otherwise the top 50 features were, except left and right

Amygdala volume (#18, #24), constituted by exclusively grading features provided by

GRAD.

Table 2: Overview of the classification results for the 10-fold cross validation on the

subset of the ADNI1-2 cohort. Mean classification accuracy (± SD) based on 10-fold

cross validation.

Type # Feat. AD vs. CN AD vs. MCI MCI vs. HC AD vs. MCI vs. HC

VOL 135 0.83±0.05 0.68±0.04 0.67±0.05 0.54±0.04

CORT 591 0.80±0.05 0.65±0.06 0.63±0.04 0.51±0.05

MBL 20 0.89±0.05 0.67±0.07 0.70±0.05 0.58±0.03

GRAD 150 0.86±0.04 0.67±0.04 0.69±0.04 0.56±0.04

ALL 896 0.87±0.03 0.68±0.04 0.72±0.05 0.59±0.04
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Table 3: Overview of the classification results obtained on CADDementia training data.

Mean classification accuracy (± SD) based on 10 classification runs.

Type # Feat. AD vs. CN AD vs. MCI MCI vs. HC AD vs. MCI vs. HC

VOL 135 0.86±0.03 0.73±0.05 0.68±0.05 0.56±0.08

CORT 591 0.91±0.05 0.67±0.09 0.65±0.05 0.58±0.07

MBL 20 0.94±0.02 0.62±0.04 0.75±0.04 0.66±0.01

GRAD 150 0.88±0.03 0.75±0.06 0.76±0.03 0.67±0.05

ALL 896 0.92±0.02 0.78±0.05 0.75±0.04 0.68±0.05

5.2 Computation times

The approximate computation times per subject are summarised in Table 4. None of the

presented methods requires manual interaction.

Table 4: Overview of the approximate computation times per subject.

Task Runtime Implementation Automatic

N4 bias correction < 30 minutes single core yes

pincram brain extraction < 1 hour parallel yes*

registration of the 30 atlases (VOL) < 2 hours parallel yes

atlas fusion (VOL) < 20 minutes single core yes

cortical thickness (CORT) < 15 minutes single core yes

variable selection, 292 images (MBL) < 2.5 hours single core yes

local binary patterns (MBL) < 1 second single core yes

dimensionality reduction, ∼1800 subjects (MBL) < 10 seconds parallel yes

Grading feature extraction (GRAD) < 5 minutes single core yes

classification < 1 second single core yes

*(manual quality control)

6 Discussion

We have presented four independent approaches for extracting both structural and in-

tensity based biomarkers from MR images with the goal of Alzheimer’s disease state

classification. Cross-validation experiments on the ADNI database suggest that the vol-

umetric features (VOL) and in particular the intensity (MBL) and grading features

(GRAD) are competitive to published state-of-the-art classification results. We have

found that combining these features by training a single random forest for all features

jointly seems to have no great impact on the classification performance. This finding

suggests that the presented biomarkers provide little complementary information, which

was unexpected but indicates the difficulty of an accurate three-way classification on
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the ADNI database. Classification results on the training data provided through the

CADDementia challenge were substantially higher than those obtained on the ADNI

database. While this finding is, due to the small sample size of the training dataset, not

definitive it is highly interesting as it suggests that the subjects in the challenge data

show a clearer group separation than the ADNI cohort.
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Abstract. We propose a method for dementia classification based brain
magnetic resonance images (MRIs). The method learns to recognize
patients with Alzheimer’s disease or Mild Cognitive Impairment from
healthy controls. The features used are extracted with sparse logistic re-
gression from a large pool of voxel-wise gray matter densities computed
based on MRIs registered to stereotactic space. The classifier uses a Low
Density Separation algorithm, which can take advantage of both labeled
and unlabeled samples. The differences between the training and test sets
are compensated based on an algorithm for unsupervised domain adapta-
tion. The method is fully automatic. The proposed method participated
in the 2014 CADDementia competition, with an estimated accuracy of
0.767 for the public test data. The training data was extracted from
ADNI database.

Key words: Semi-supervised learning, Alzheimer’s disease, mild cognitive im-
pairment, domain adaptation, low density separation

1 Introduction

Alzheimers disease (AD) is the most common form of dementia. More than
30 million people worldwide suffer from AD and, due to the increasing life ex-
pectancy, this number is expected to triple by 2050 [1]. Therefore, it is extremely
important to identify subjects in a risk of getting the disease.

In this paper, we propose an approach to automatically categorize subjects
into three classes: Subjects with Alzheimer’s disease (AD), subjects with mild

�� Data used in preparation of this article were obtained from the Alzheimers Disease
Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the inves-
tigators within the ADNI contributed to the design and implementation of ADNI
and/or provided data but did not participate in analysis or writing of this report.
A complete listing of ADNI investigators can be found at http://adni.loni.usc.
edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
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2 Semi-supervised AD classification

cognitive impairment (MCI) and cognitively normal subjects (NC). Our method
relies on voxel-based morphometry (VBM) style preprocessing [2]. The MRI
features used for the classification are selected from a larger pool of features using
sparse logistic regression [3, 4]. Then, relying on these features, we construct
a hierarchical classification framework utilizing binary classifiers as component
classifiers. Each binary classifier is trained in a semi-supervised manner, meaning
that they can utilize unlabeled data in addition to labeled data. The labeled
data is obtained from the ADNI database and CADDementia data is used as
unlabeled data. The semi-supervised learning is performed by the Low Density
Separation (LDS) algorithm [5], and we have demonstrated its efficiency for
classifying subjects with stable and progressive MCI [6, 7]. Here, we extend the
methods [4, 7] to the three-category classification problem (AD vs. MCI vs. NC).
Moreover, because our training and test sets have different characteristics we
utilize an unsupervised domain adaptation method to normalize the samples [8].
The method is fully automatic.

The rest of this paper is organized as follows. Section 2 describes the image
data used for the training and validating the classifier. Also the image prepro-
cessing and the used features are described in Section 2. Section 3 introduces
the classification scheme. Section 4 presents experimental validation results with
CADDementia data and Section 5 concludes the paper.

2 Material

2.1 Training data: ADNI

Data used in this work to train the classifier is obtained from the Alzheimers Dis-
ease Neuroimaging Initiative (ADNI) database http://adni.loni.usc.edu/.
The ADNI was launched in 2003 by the National Institute on Aging (NIA), the
National Institute of Biomedical Imaging and Bioengineering (NIBIB), the Food
and Drug Administration (FDA), private pharmaceutical companies and non-
profit organizations, as a 60 million US dollar, 5-year public-private partnership.
The primary goal of ADNI has been to test whether serial MRI, PET, other bio-
logical markers, and clinical and neuropsychological assessment can be combined
to measure the progression of MCI and early AD. Determination of sensitive and
specific markers of very early AD progression is intended to aid researchers and
clinicians to develop new treatments and monitor their effectiveness, as well as
lessen the time and cost of clinical trials.

The Principal Investigator of this initiative is Michael W. Weiner, MD, VA
Medical Center and University of California San Francisco. ADNI is the result of
efforts of many co-investigators from a broad range of academic institutions and
private corporations, and subjects have been recruited from over 50 sites across
the U.S. and Canada. The initial goal of ADNI was to recruit 800 subjects but
ADNI has been followed by ADNI-GO and ADNI-2. To date these three protocols
have recruited over 1500 adults, ages 55 to 90, to participate in the research,
consisting of cognitively normal older individuals, people with early or late MCI,
and people with early AD. The follow up duration of each group is specified in
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the protocols for ADNI-1, ADNI-2 and ADNI-GO. Subjects originally recruited
for ADNI-1 and ADNI-GO had the option to be followed in ADNI-2. For up-to-
date information, see www.adni-info.org.

Data used include baseline MRI of 835 subjects (T1-weighted MP-RAGE
sequence at 1.5 Tesla, typically 256 x 256 x 170 voxels with the voxel size of
approximately 1 mm x 1 mm x 1.2 mm). 835 subjects are grouped as

1. AD (Alzheimers disease), if diagnosis was Alzheimers disease at baseline (n
= 200);

2. NC (Normal Cognitive), if diagnosis was normal at baseline (n = 231);
3. sMCI (stable MCI) if diagnosis was MCI at all available time points, but at

least for 36 months (n = 100);
4. pMCI (progressive MCI), if diagnosis was MCI at baseline but conversion to

AD was reported after baseline within 1, 2 or 3 years, and without reversion
to MCI or NC at any available follow-up (n = 164);

5. uMCI (unknown MCI), if diagnosis was MCI at baseline but they are not
diagnosed at the end of the project. These subjects’ data were not used for
the classifier training.

We used different training sets based on this labeling to build the component
classifiers of our hierarchical scheme. We explain the details in Section 3.4.

2.2 Test data:CADDementia

The method was validated with 30 labeled images from CADDementia data
described in the challenge homepage 1. These images were not used for training
nor parameter tuning. The essential difference between this data and the training
data is that the CADDementia images were acquired with 3 Tesla scanners.

2.3 Image preprocessing and features

All the images (train and test) were preprocessed in a fully automatic manner
by a pipeline similar to that described in [2]. Preprocessing of the T1-weighted
images was performed using the SPM8 package2 and the VBM8 toolbox3, both
running under MATLAB. All T1-weighted images were corrected for bias-field in-
homogeneities, then spatially normalized and segmented into grey matter (GM),
white matter, and cerebrospinal fluid (CSF) within the same generative model
[9]. The segmentation procedure was further extended by accounting for partial
volume effects [10], by applying adaptive maximum a posteriori estimations [11],
and by using an hidden Markov random field model [12] as described previously
[13]. Only the GM images were used. Note that these images represent GM tissue
fractions in each voxel. Following the pipeline proposed by [14], the GM images

1 http://caddementia.grand-challenge.org/home/
2 http://www.fil.ion.ucl.ac.uk/spm/
3 http://dbm.neuro.uni-jena.de/
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were processed with affine registration and smoothed with 8-mm full-width-at-
half-maximum smoothing kernels. After smoothing, images were resampled to 4
mm spatial resolution. See Figure 1 for an example slice of the original image
and preprocessed image.

Masking of the GM tissue fraction images results in aligned GM tissue frac-
tions from 29852 voxels. As discussed in [4, 7], the number of voxels significantly
exceeds the number of the available training data. Although our classifier is rel-
atively tolerant to high-dimensional data, it is still unable to process this high
number of features. Therefore, we initially reduce the number of features by
using a regularized logistic regression classifier, that has an inherent feature se-
lection property, on data from AD and NC classes (ADNI) [4, 7, 3]. The classifier
produces a set of good candidate subsets with different cardinalities, and the
most appropriate subset is selected by cross-validation. As a result, 309 voxels
were selected. Finally, age related effects were removed from the data by using
linear regression [15, 6].

(a) (b)

Fig. 1. An example slice of the original image (a) and preprocessed image (b)

3 Classifier

3.1 Overview

A simplified flowchart of the training of the classifier is shown in Figure 2.
Details of this procedure are explained in Section 3.4. Important algorithmic
components, low density separation classifier and domain adaptation are briefly
described in Sections 3.2. and 3.3, respectively.

Our classification scheme is hierarchical. In the first step, we aim to separate
AD and NC subjects to different classes without caring to which class the MCI
subjects are classified. We term these disease classes (AD + MCI and NC +
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MCI) as the first level classes. Before the classification, we perform the domain
adaptation by using only AD and NC subjects in both datasets. In second step,
the first level classes are further divided to AD and MCI classes (AD + MCI) and
MCI and NC classes (NC + MCI) giving us the desired three class classification.
Note that the label of the subjects classified as MCI is independent of whether the
first level class was AD + MCI or NC + MCI. The rationale of this hierarchical
scheme is that the MCI is a transitional stage between the AD and normal aging,
however, not all the MCI subjects convert to AD and this makes the MCI class
very heterogeneous.

Fig. 2. Classifier structure. DA stands for domain adaptation. LDS stands for low
density separation.

3.2 Low density separation

We apply a semi-supervised learning (SSL) technique called Low Density Sepa-
ration (LDS) to train the three required component classifies in our hierarchical
scheme. We next explain the main ideas of the algorithm briefly; see [5] for fur-
ther details. Semi-supervised learning (SSL) approaches are able to use unlabeled
data in conjunction with labeled data in a learning procedure for improving the
classification performance. LDS is a semi-supervised learning algorithm which
relies on the assumption that there is low density region with little (if any) data,
which is where the decision boundary should lie.

The algorithm consists of two stages. First, it constructs a graph distance
derived kernel with the aim of increasing class separability and on the other hand
to increase the clustering within the classes. Heuristically, the distance between
the two nearest neighbors in feature space is incremented if they are far from
each other and decremented if they are close to each other. The definition of the
distance depends on the parameter ρ which we tune by cross-validation (see [5]
for details).

The second step consists of training a transductive support vector machine
with the graph-distance derived kernel to obtain the parameters for the dis-
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criminant function y = sign(wTx + b), where w is the weight vector (in the
transformed space), x is the image to be classified (in the transformed space),
y = {−1, 1} is the label of x and b is the bias of the classifier. Vector w and bias
b are found by minimizing

1

2
‖w‖22 + C

N∑
n=1

L(yn(w
Txn − b)) + C∗

N+M∑
n=N+1

L(|wTxn − b|),

where (xn, yn), n = 1, . . . , N are the labeled data, xn, n = N + 1, . . . , N + M
are the unlabeled data, L(·) is the hinge loss function, and C and C∗ are scalar
parameters. The value of C is selected by cross-validation within the training
data, and C∗ is set as in [5].

3.3 Domain adaptation

It is unlikely that the data from ADNI and CADDementia would follow the same
distributions conditioned on the disease labels. For example, the ADNI data we
use has been acquired with 1.5 Tesla scanners while the CADDementia data has
been acquired with 3 Tesla scanners. Techniques for addressing learning prob-
lems with mismatched distributions are often referred as domain adaptation or
transfer learning. The idea of these algorithms is try to improve the similarity of
the data from source (ADNI in our case) and target domains (CADDementia in
our case). When there is no labeled data from the target domain to help learning
classifiers, the problem setting is termed unsupervised domain adaptation. Here,
we utilize an information theoretic approach for the unsupervised domain adap-
tation [8]. We did not compensate for possible differences between the different
acquisition sites in the CADDementia data.

3.4 Detailed procedure

In the first level, the ADNI (AD and NC) subjects are used as source data and all
CADDementia data are used as target data for domain adaptation. After domain
adaptation, the AD and NC subjects from ADNI are used as training data for
AD + MCI and NC + MCI classes, respectively. In order to design the first level
classifier and the most important LDS parameters (C and ρ) are tuned using 10-
fold cross-validation inside the training (ADNI) data. All CADDementia data
are used as unlabeled data for this classifier and eventually divided into two
groups. This is repeated 101 times to obtain the best possible parameter values
and the final class of the subjects is decided based on the majority vote. Based
on this procedure all the CADD data are divided into two groups, i.e., AD +
MCI group and NC + MCI group.

In the second level, to design AD vs. MCI classifier, the AD and pMCI
subjects of ADNI are used as the source data and the CADDementia subjects
classified to the AD + MCI class during the first level are used as target data
for the domain adaptation. After the domain adaptation the AD and pMCI
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subjects of ADNI are used as labeled data for training in order to design the
AD vs MCI classifier and the LDS parameters (C and ρ) are tuned using 10-fold
cross-validation inside training data. The CADDementia subjects classified to
the AD + MCI class during the first level are used as unlabeled data for the
LDS classifier and subsequently classified to AD and MCI groups. Again this
is repeated 101 times and the final label of the subject is decided based on the
majority vote.

In the second level, to design NC vs. MCI classifier, the sMCI and pMCI
subjects of ADNI are used as the source data and the CADDementia’s NC
+ MCI class from the first level are used as the target data for the domain
adaptation. After the domain adaptation the sMCI and pMCI subjects of ADNI
are used for training in order to design the NC vs. MCI classifier and the LDS
parameters (C and ρ) are tuned using cross-validation inside training data, again
repeating the procedure for 101 times. The classifier divides CADDementia’s NC
+ MCI class into two subclasses, i.e. NC and MCI subclasses. The decision to
use sMCI subjects’ data as the training data for NC class was made based on
experimental grounds. In this phase, we balanced the numbers of pMCI and
sMCI subjects in the ADNI data by resampling in both domain adaptation and
classification phases because the number of sMCI subjects (100) is smaller than
the number of pMCI (164) subjects in the ADNI data.

3.5 Computation time

The total running time was approximately 9 minutes per image with a Matlab
based implementation. The computationally most heavy part was the image
pre-processing implemented in VBM8 that required approximately 8 minutes
per image. The domain adaptation required, on average, 29.73 seconds per 100
images (domain adaptation cannot be performed for a single image). The LDS
classification and age removal required under one second per image. The domain
adaptation and classification were performed twice for each image (in the first
and second level).

4 Results

The classification accuracy on 30 labeled examples in the CADDementia dataset
was 0.767. Since we did not use the label information on the CADDementia
data, we consider this to be unbiased estimate of the classification accuracy.
The confusion matrix with this data is shown in Table 1. The confusion matrix
shows that there were no NC subjects mislabeled as AD subjects or vice versa.
However, there were mislabelings between MCI and AD and NC and MCI. This
is consistent with the MCI being a transitional stage between normal aging and
AD.
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True class Predicted class

NC MCI AD

NC 9 3 0

MCI 2 7 0

AD 0 2 7

Table 1. Confusion matrix

5 Discussion

We have proposed a method for dementia classification based brain MRIs. The
fully automated method recognized patients with AD or MCI from healthy con-
trols. The features for the classification were extracted from voxel-wise gray
matter densities computed based on aligned MRIs [2]. The classification method
was hierarchical, utilizing the fact that the MCI is a translational stage between
the AD and normal aging. The main novelties of the classifier were the utilization
of unlabeled data in additional to labeled data in order to improve the classifi-
cation [5] and the use of unsupervised domain adaptation to try to compensate
between the differences of the training and test data [8]. We have previously
demonstrated the utility of unlabeled data for predicting MCI-to-AD conversion
[4]. The method trained with ADNI data achieved an accuracy of 0.767 with the
public part of the CADDementia test data.
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2. Gaser, C., Franke, K., Klöppel, S., Koutsouleris, N., Sauer, H., et al.: BrainAGE in
mild cognitive impaired patients: predicting the conversion to alzheimers disease.
PloS ONE 8(6) (2013) e67346

3. Friedman, J.H., Hastie, T., Tibshirani, R.: Regularization paths for generalized
linear models via coordinate descent. J. Stat. Software 33(1) (2010) 1–22

MICCAI 2014 - Challenge on Computer-Aided Diagnosis of Dementia Based on Structural MRI Data

72



Semi-supervised AD classification 9

4. Moradi, E., Gaser, C., Tohka, J.: Semi-supervised learning in MCI-to-AD conver-
sion prediction - when is unlabeled data useful? In: IEEE Pattern Recognition in
Neuro Imaging, IEEE (2014) 121 – 124

5. Chapelle, O., Zien, A.: Semi-supervised classification by low density separation.
In: AISTATS. (2005) 57–64

6. Moradi, E., Pepe, A., Gaser, C., Huttunen, H., Tohka, J.: Semi-supervised learning
for early MRI-based MCI-to-AD conversion prediction. In: Organization for human
brain mapping annual meeting. (2014)

7. Moradi, E., Pepe, A., Gaser, C., Huttunen, H., Tohka, J.: Semi-supervised learning
and random forests for MRI-based prediction of AD conversion in MCI subjects.
Submitted (2014)

8. Shi, Y., Sha, F.: Information-theoretical learning of discriminative clusters for
unsupervised domain adaptation. ICML 2012 (2012)

9. Ashburner, J., Friston, K.J.: Unified segmentation. Neuroimage 26(3) (2005) 839–
851

10. Tohka, J., Zijdenbos, A., Evans, A.: Fast and robust parameter estimation for
statistical partial volume models in brain MRI. Neuroimage 23(1) (Sep 2004)
84–97

11. Rajapakse, J.C., Giedd, J.N., Rapoport, J.L.: Statistical approach to segmentation
of single-channel cerebral mr images. Medical Imaging, IEEE Transactions on
16(2) (1997) 176–186

12. Cuadra, M.B., Cammoun, L., Butz, T., Cuisenaire, O., Thiran, J.P.: Comparison
and validation of tissue modelization and statistical classification methods in t1-
weighted MR brain images. IEEE Trans Med Imaging 24(12) (Dec 2005) 1548–1565

13. Gaser, C.: Partial volume segmentation with adaptive maximum a posteriori
(MAP) approach. NeuroImage 47 (2009) S121
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1 Introduction

Our participation in the MICCAI 2014 CADDementia challenge aims at evalu-
ating the performance of morphometric descriptors in multi-class classification
tasks for the prediction of Alzheimer’s disease and Mild Cognitive Impairment
from structural Magnetic Resonance Images (MRIs).

We used the method for the construction of population-specific atlases that is
described in [6, 5]. The method takes as input a set of segmented brain structures,
which take the form of the union of labelled 3D surface meshes, called shape
complexes. The method estimates an anatomical model, called template, which is
representative of the shape complexes within a group of subjects. The variability
in shape within the group is captured by 3D space deformations of the ambient
space, which warps the anatomical model to the anatomical shape complex of
each subject. The method estimates the anatomical model together with the
deformation parameters.

The method requires to use the same set of homologous structures for all
subjects. We choose a subset of 12 deep brain structures that were segmented
from MRIs: caudate nucleus, putamen, pallidum, thalamus, hippocampus and
amygdala of each hemisphere. We do not include the lateral ventricles because of
a large variability in the segmentation of the horns of the ventricles, which could
have masked other patterns of shape variability in the statistical analysis. We
do not include the cortical surface because of the subject-specific gyrification.

Deformation parameters are seen as a multi-variate descriptor, which encodes
the differences in shape between each subject’s anatomical configuration and the
anatomical model. This descriptor encodes different patterns such as the shift
of the caudate nucleus due to the ventricular enlargement and the hippocampal
atrophy, for instance. The residual shape, namely the difference between the
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deformed template and the subject’s shape complex, is considered as noise. The
combination of the two terms gives the likelihood of a given anatomical shape
complex, which will be used in classification.

We use a sub-set of the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database to build the anatomical models. We build three anatomical models
considering a group of Cognitively Normal (CN) subjects, subjects with Mild
Cognitive Impairment (MCI) and patients with Alzheimer’s disease (AD). Once
the models are built, we test any new subject by registering each model to the
shape complex of this subject and computing its likelihood. We then classify
according to the maximum likelihood. We test our classifiers on another sub-set
of the ADNI database and the CADDementia database.

The method is fully automatic. The atlas construction method uses the con-
cept of varifolds [3] for mesh comparison and therefore does not require specific
mesh pre-processing. The method is indeed robust with respect to changes in
topology between meshes, small holes, spikes, irregular sampling and inconsis-
tency in normal orientations. We do not perform quality control of the segmen-
tations as small errors in the position of the boundaries are likely to be averaged
out in this kind of shape analysis. The use of smooth 3D deformations also
acts as low-pass filter which smoothes out irregularities in the boundaries of the
structures. Few important failures in segmentations are likely to be considered
as outliers in the statistical analysis. We use the implementation of the method
in the software Deformetrica, which is freely available at www.deformetrica.org.

Building the anatomical models took 3 days, 15 hours on average (with a
parallelization on 40 threads). Registering the anatomical models to test subjects
took 10 hours and 20 minutes on average, with a standard deviation of about
1 hour and 30 minutes. The computations were made on a computer cluster
wich is composed of two types of machines. The first one (with 32 computing
nodes) is running on an Intel R©Xeon R©Processor X5650 (2x6 Cores, 2.66 GHz)
and 12x4GB 1333MHz DDR3 Memory and the second one (with 2 computing
nodes) is running on an Octo-processor Intel R©Xeon R©Processor X7550 (8x2x8
Cores, 2 GHz) and 128x2GB 1066MHz DDR3 Memory.

2 Material and Methods

2.1 Data sets

We use the baseline images from the ADNI database to build the statistical
models. We choose the same set of 509 subjects as the ones selected in [4], de-
composed into 162 cognitively normal controls (CN), 210 patients with Mild
Cognitive Impairment (MCI) and 137 patients diagnosed with Alzheimer’s dis-
ease (AD) at baseline. We split the data set into a training set of 50 CN, 50 MCI
and 50 AD, the rest being our test set.

We perform the same pre-processing to all ADNI and CADDementia data.
The atlas construction is performed only on the training sub-set of the ADNI
data. Classification are performed on the test set of the ADNI data and the
CADDementia data.
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2.2 Data pre-processing

The data pre-processing consists of the following steps:

– We run FreeSurfer1 on the T1 MRI data [7] with default parameters. The
output is volumetric segmentation of various structures. At this stage, we
exclude from the ADNI dataset, 2 subjects for which the FreeSurfer pipeline
failed.

– We run a marching cube algorithm (as implemented in FreeSurfer) to re-
construct 3D triangular meshes from the volumetric segmentation of the 12
selected structures on the RAS coordinate system (Right, Anterior, Supe-
rior). We do not perform any other processing on the meshes, although they
have holes, spikes and irregular meshing.

– We register all images to the image of a control young adult from the ADNI
training data set (126 S 0405 S14635 I38828) using FSL software2 [9]. We
use rigid and scaling transformation with 7 degrees of freedom. The trans-
formations are then applied to the meshes. The transformed meshes are the
inputs given to the software Deformetrica.

Additionally, we build a naive prototype initialization for the anatomical
models to give as input of Deformetrica. We build this prototype by mapping a
sphere to each structure of the reference subject with very smooth parameters.
The corresponding initial anatomical model is shown in Fig. 1-left.

2.3 Atlas construction on ADNI training data

We use the Deformetrica software to build the anatomical models and esti-
mate the deformation parameters. The method minimizes the following criterion
(see [5] for details):

E(X0, c,α0, . . . ,αN ) =

N∑
i=1

{
12∑
k=1

1

2σ2
k

∥∥φαi(X0,k)− Si
k

∥∥2
W

+αT
i KV αi

}
(1)

where

– X0 = {X0,k}k=1,...,12 denotes the position of the vertices of the anatomical
model with 12 components, one for each anatomical structure,

– c denotes a set of control points which are supposed to move to the most
variable parts of the anatomical model,

– {αi}i=1,...,N denotes momentum vectors attached to the control points which
parameterize the deformations of the anatomical model to each subject’s
anatomical configuration (among N the number of subjects),

– Si
k denotes the mesh of the k-th structure of the i-th subject,

1 http://surfer.nmr.mgh.harvard.edu
2 http://fsl.fmrib.ox.ac.uk
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– {φαi}i=1,...,N denotes the smooth 3D deformation from the anatomical model
to the i-th subject,

– ‖.‖W denotes the varifold norm,
– σ2

k denotes the variance of the noise of the k-th structure in the space of
varifolds,

– KV is the deformation kernel matrix, so that αT
i KV αi measures the squared

norm of the initial velocity of the deformation

We choose the following parameters, using the rationale detailed in [5]:

– deformation kernel width: σV = 10 mm,
– varifold kernel width: σW = 5 mm,
– variance of noise: σ2

k = 16 for all structures,
– template kernel width 0.5σV ,

other parameters being the ones by default in Deformetrica.

2.4 Classification of ADNI test data and CADDementia data

Any test image is transformed into a set of sub-cortical structures after the pre-
processing steps explained in 2.2. We then register each atlas to this subject’s
shape complex. The registration is performed by minimizing the following crite-
rion, which is essentially (1) for N = 1 and keeping fixed the atlas parameters:
the template shape X0 and the control points c:

E(α) =
12∑
k=1

1

2σ2
k

‖φα(X0,k)− Sk‖2W +αTKV α, (2)

where the Sk’s denotes the test subject shapes.
The value of the criterion E at convergence is an approximation of the log-

likelihood of the test data [1, 2]. In order to take into account the covariance
of the deformation parameters, we replace the matrix KV by the inverse of
the regularized empirical covariance matrix of the momentum vectors αi. This
corrected value of the criterion is used in classification.

3 Results

3.1 Results on the ADNI data

In Fig. 2, the 3 estimated template shape complexes are shown. The template
of the MCI class falls in-between the template of the CN and AD classes. These
shapes show the shift of the caudate nucleus toward the lateral parts of the brain
due to a larger and larger ventricular enlargement. We notice also a greater and
greater atrophy of the hippocampus.

The confusion matrix of the classification performed on the test sub-set of
the ADNI database is shown in Table 1. The accuracy, assuming the probability
of 1/3 for each class, is 51% (i.e. 1

3

∑3
k=1 nk,k/nk where nk =

∑3
i=1 ni,k is the
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total number of samples of the class k). We notice that our classifier tends
to empty the MCI class, and to classify MCI subjects as either CN or AD with
equal probability. This may be explained by the fact that our descriptors of MCI
subjects overlap the descriptors of CN and AD classes, as if there is a continuum
between the three classes. In other words, our classifier does not detect shape
patterns that are specific to MCI subjects. This conclusion is corroborated by
the visualization of the 3 template shapes complexes in Fig. 2.

The ROC curves of pairwise classification are shown in Fig. 3. As expected,
the AD versus CN classification has overall better performance than classification
of AD or CN against MCI.

Fig. 1. Initial prototype given as input of Deformetrica (left) and an instance of esti-
mated atlas given as output (right): template shapes are representative of the group
and momenta arrows parameterize template-to-subject deformations.

Fig. 2. Superimposition of the 3 template shapes for the CN, MCI and AD classes in
green, blue and red respectively. Anterior view (left) and posterior view (right)
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True class

ADMCI CN
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AD 66 83 28
MCI 6 13 5
CN 14 64 78

Table 1. Confusion matrix on ADNI test data set.
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Fig. 3. ROC curves of pairwise classification on the ADNI database.

3.2 Results on the CADDementia training data

We test our classifier on the 30 subjects of the training database of CADDe-
mentia. Table 2 shows the confusion matrix using the thresholds that maximize
the accuracy of the classifier on the ADNI data set, for which the accuracy is
50%. These two thresholds determine the position of the boundaries between the
three classes. The optimization of these two thresholds on the given 30 subjects
of the CADDementia database yields the confusion matrix in Table 3 and an
accuracy of 73%. Differences in optimum thresholds between the two databases
may come from differences in patients, differences in age distribution, differences
in clinical practice for the diagnosis of mild cognitive impairment and dementia.
Optimizing the thresholds on only 30 subjects is also not ideal, as they might
not generalize well to the rest of the data set. For these reasons, we decided to
submit two predictions for each subject: one using the thresholds estimated from
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the ADNI data set and the other one using the thresholds estimated from the
CADDementia training data set.

True class

ADMCI CN

H
y
p
o
t
h
e
s
iz
e
d

c
la
ss

AD 4 3 0
MCI 3 0 1
CN 2 6 11

Table 2. Confusion matrix for the classi-
fication of the CADDementia training set,
using the thresholds that are optimum for
the ADNI data set.

True class

ADMCI CN
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h
e
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e
d
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ss

AD 9 5 2
MCI 0 4 1
CN 0 0 9

Table 3. Confusion matrix for the clas-
sification of the CADDementia training
set after optimizing the thresholds for this
data set.

4 Discussion and conclusion

This work evaluates the performance of the Deformetrica software in classi-
fication tasks. The software computes shape descriptors for anatomical shape
complex of sub-cortical structures that are known to be markers of disease pro-
gression. The approach is essentially multi-variate and combine different shape
patterns such as the effect of hippocampal atrophy and ventricular enlargement
on the shape of the sub-cortical structures. Our results suggest that the method
does not find shape features that are characteristic of MCI subjects. The method
tends to position the anatomy of MCI subjects, as an intermediate stage of dis-
ease progression. This fact may come from the method itself, which does not
capture characteristics of such non-demented subjects. It may also come from
the heterogeneity of the MCI group.

Our goal was to use the software Deformetrica “out of the box” as a test
case, whereas several improvements could be made such as the estimation of
the covariance of deformation parameters and noise variance during the training
phase along the lines of [1, 8]. We could have determined also the best thresholds
using cross-validation on the ADNI database. Correction for age and sex could
also have improved classification performance.
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Abstract. Recent studies have shown that features extracted from brain
MRIs can successfully discriminate Alzheimer’s disease from Mild Cog-
nitive Impairment. This study describes a method that sequentially ap-
plies advanced feature selection techniques for finding the best subset
of features in terms of binary classification accuracy. The classifiers that
provide the highest accuracy, are then used for solving a multi-class prob-
lem by the one-versus-one strategy. Although several approaches based
on Regions of Interest (ROIs) feature extraction exist, the predictive
power of these features has not yet been investigated by comparing filter
and wrapper techniques. The findings of this work suggest that (i) the
IntraCranial Volume (ICV) normalization can lead to overfitting and can
worsen the predictive accuracy on data originated by different studies and
(ii) the combined use of a correlation filter and a Random Forest-based
filter improves the accuracy of classification.
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1 Introduction

Alzheimer’s disease (AD) is one of the most frequent neurodegenerative condi-
tion that causes loss of cognitive abilities and memory and, due to its morbidity,
it represents a growing health problem. In prodromal stages of AD, patients are
usually classified as having an amnestic Mild Cognitive Impairment (MCI), but
not all patients affected by MCI will convert in AD. The criteria for distinguish-
ing subjects affected by Alzheimer’s disease from Mild Cognitive Impairment
are usually based on clinical examination and neuropsychological assessment [1],
but analyses of MRI neuroimages have been proposed for the early diagnosis of
these two diseases too [2].

Approaches for extracting features from MRI neuroimages are usually based
on different type of features from MRIs: the voxel-based approach considers
the probability maps of different tissue, the vertex-based approach considers
the vertex-level on the cortical surface and the ROI-based approach typically
includes only the hippocampus volume and/or shape [3].

A major challenge is related to the discovery of the best subset of biomarkers
that could improve the accuracy in discriminating AD from MCI. Furthermore,
an important drawback is the lack of a general solution that is independent from
the acquisition methods, the scanners, the pre-processing techniques of the neu-
roimages and the software used for this purpose. The CADDementia challenge1

was launched with the aim of comparing computer-aided diagnosis methods for
dementia based on MRI brain data. In the context of the challenge, this study
proposes a fully automated method based on advanced feature selection tech-
niques over the statistics generated by FreeSurfer [4], a tool for performing the
segmentation and reconstruction of MRI neuroimages.

The use of FreeSurfer statistics for an analogue problem was evaluated in
[3], where the authors adopted a given subset of predictors according to domain
knowledge and based only on a linear regression criterion. On the contrary, this
study applies and combines a number of data-driven methods for estimating
the prediction power of features by sequentially applying and combining feature
selection techniques on the three binary classification problems: controls versus
ADs, controls versus MCIs and ADs versus MCIs. The binary models are eval-
uated in terms of estimated accuracy and the best three models are combined
into a final one-versus-one multi-class classification.

Section 2 describes the adopted MRI datasets from the CADDementia chal-
lenge and the Alzheimer’s disease Neuroimaging Initiative (ADNI) database and
how they have been processed for extracting ROI features. A detailed description
of the proposed method is provided in Section 3. Section 4 reports the results
of feature selection, binary classification and multi-class classification. Finally,
Section 5 presents some conclusions and directions of future work.

1 http://caddementia.grand-challenge.org
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Table 1. Descriptive statistics of the CADDementia and ADNI data sets. Age values
(years) are mean±standard deviation and include both female and male subjects.

Description Name Class
Nr. of
subjects

Female%
Age

(mean±std)

CADDementia
training set

D1
HC 12 25% 62.33±6.26
AD 9 66.6% 66.11±5.21
MCI 9 44.4% 68±8.54

ADNI D2
HC 70 48.6% 73.6±5.49
AD 70 52.8% 74.15±8.07
MCI 70 45.7% 72.6±7.78

2 MRI Datasets and Feature Generation

Given a set of MRI brain images, the classification task considered in this work,
consists in building a multinominal classification model over the three classes
AD, MCI and healthy control subjects (HC). A pre-processing step is used to
generate a set of features from each MRI image. Feature extraction from MRIs is
performed by means of FreeSurfer 2 [4]. In particular, the FreeSurfer recon-all
script is applied with the option hippo-subfields to obtain cortical surface-
based measures, cortical and subcortical volume-based measures and volumes
of the hippocampus subfields. The features used in this study consists of 45
volumes of subcortical structures, 34 mean thickness and 34 cortical volumes
for each hemisphere, and 8 hippocampus volume subfields for each hemisphere,
for a total of 197. Including the diagnosis, gender and age the total number
of features per subject is 200. FreeSurfer tools store the generated features in
a number of files organised per subject and per study. In order to manage the
feature generation and selection task, we have adopted the Konstanz Information
Miner (KNIME)3, a popular data analytics framework, and have developed K-
Surfer4 [5], a novel KNIME plugin for a fully automated extraction of selected
features from the numerous FreeSurfer output files. The characteristics of the
data sets used in this work are reported in Table 1 and briefly discussed in the
following sections.

2.1 The CADDementia dataset (D1)

The CADDementia challenge provides two sets of MRI scans, which include
subjects from different studies. The competition training data is a small labelled
data set. The competition testing data is a larger unlabelled data set. Hence,

2 http://freesurfer.net
3 http://www.knime.org
4 https://sourceforge.net/projects/ksurfer/
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for the aim of this work, only the competition training data are used to evalu-
ate the classification models. We will refer to this dataset as D1, which consists
of 30 MRI scans (T1w and acquired by 3T scanners) of controls, without any
dementia syndrome, Alzheimer’s disease (AD) affected patients and Mild Cogni-
tive Impairment (MCI) affected patients. Additional information about the data
characteristics, can be found on the official web site of the competition. Feature
generation from the CADDementia MRIs was performed by using FreeSurfer
5.3.

2.2 The ADNI dataset (D2)

The Alzheimer’s Disease Neuroimaging Initiative (ADNI) is an international
project that collects and validates neurological data such as MRI and PET
images, genetics or cognitive tests. Besides imaging resources, ADNI provides
cortical reconstruction and volumetric segmentation generated by FreeSurfer.

For the aim of this work, a subset of the ADNI data has been selected to
match the characteristics of the CADDementia data. Only MRIs acquired by
3T scanners, weighted in T1 and processed by FreeSurfer, have been selected.
The selected data include those subjects (a) diagnosed as HC, AD and late Mild
Cognitive Impairment (late MCI) that (b) completely passed the quality test,
and include (c) only Non-Accelerated T1 scans related to the baseline visit. Data
entries with missing values have been excluded.

Among all available subjects complying with the above constraints, the three
class groups have been randomly sampled in order to obtain a balanced dataset.
This dataset, which we refer to as D2, consists of 210 subjects (70 for each class).

3 Feature Selection and Classification Model Inference

This study employs a fully automatic feature selection approach and considers
all the 197 volume and thickness features generated by FreeSurfer as described
in the previous section: no manual feature selection is applied, e.g. by exploiting
a priori clinical and/or domain knowledge.

High dimensionality of the data may affect the computational performance
(processing time) and, worse, it may lead to a wrong estimation and identifica-
tion of the relevant predictors. Feature selection can reduce dimensionality, thus
mitigating performance issues and improving the classification accuracy.

Finding an optimal solution to the feature selection problem would require
an exhaustive search over the feature subsets and is intractable. A suboptimal
feature selection is typically solved with heuristic methods. Several techniques
exist [6]: filters methods are applied independently from the chosen classification
method, wrappers methods are strictly associated to the classification method,
and embedded methods are performed within the classification process. In this
work two filter methods and a wrapper method have been combined to improve
the accuracy of the subsequent classification process. The overall data analysis
workflow is shown in Figure 1 and is described in the next section.
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Fig. 1. Diagram of the adopted workflow based on a combination of feature selection
techniques.

3.1 The data analysis workflow

The adopted workflow is composed by five steps (Figure 1): (i) IntraCranial
Volume normalization; (ii) Feature Selection with three techniques; (iii) Z-Score
normalization; (iv) binary classification and (v) multi-class classification.

The core of the proposed method consists in sequentially applying a Correla-
tion filter, a Random Forest (RF) filter and a Support Vector Machines (SVM)
wrapper on the training dataset, to identify a subset of features that provides
the highest binary classification accuracy. Four different combinations of these
feature selection techniques are considered and tested.

ICV normalization • The aim of the IntraCranial Volume (ICV) normal-
ization is to take into account differences between subjects in ROIs due to the
size of the head and to the gender. It is performed by dividing each volumetric
feature by the total intracranial volume of the subject. This normalization is
widely used in the literature [7]. The proposed workflow has also been tested
without it, as it could hide subtle differences in small areas.

Correlation-based filter • This filter discards any feature that is highly
correlated to a feature already selected. A correlation constrain |r| < 0.7 is typ-
ically adopted, although more restrictive (0.4) and less restrictive (0.85) thresh-
olds have also been used [8]. Since no conclusive knowledge about correlation
filtering of dementia predictors exists, correlated features have been removed
considering a very conservative threshold of 0.90.

Filter • A drawback associated with correlation-based filters is that they do
not take into account the relations between features, which can actually improve
the classification performance when considered together. One commonly-used
data mining technique for filtering is Random Forests (RF), which is able to
measure the importance of features w.r.t. the classification outcome, thanks to
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the hierarchical decision tree structure that can model non-linear associations.
A random forest-based filter is applied after removing highly correlated features
and the features with an importance greater than 0.50 are selected.

Wrapper • As stated in [6], filters are tipically faster compared to wrappers,
they can effectively reduce space dimensionality and they overcome overfitting.
However, filters are independent from the chosen learning algorithm and take
into account the prediction power of individual features, not of subsets of fea-
tures. Wrapper methods solve this issue, searching the space for those subsets
that provide the highest prediction accuracy. The Recursive Feature Elimina-
tion (RFE) method [9] performs backward feature elimination, with the aim of
sequentially and iteratively removing the most irrelevant features. In this study,
RFE has been applied with an SVM radial predictor as a filter.

Z-Normalization • A Z-score transformation is applied before performing
classification to prevent that range differences in the features could have a neg-
ative effect.

Binary classification • Many classification methods have been applied to
neuroscience data. Among those, it has been shown that Support Vector Ma-
chines (SVM) overcome the limitations of other techniques and have been suc-
cessfully applied to discriminate a variety of neurological conditions [10]. SVMs
are based on kernel functions, interpreted as a measure of similarity between
two inputs. In this study a Radial Basis kernel is used. A 10 − fold cross-
validation method is used for evaluating the accuracy of classification and for
finding the optimal cost (C) hyperparameter of the SVM classification model.
Multiple SVM models are generated from the training dataset and are applied
to the test dataset to compute the prediction accuracy on the three pair-wise
classification problems.

Multi-class classification • In general, distinguishing between two classes
is an easier task and the most common strategy for multi-class classification
is based on the aggregation of binary classifiers. The one-versus-one (OVO)
method divides the problem into a number of binary problems equal to all possi-
ble combinations of pairs of classes [11]. The final output of the OVO method is
derived from the probabilities calculated by each binary classifier as reported in
a score matrix. Different aggregation techniques can be used, such as the Voting
Strategy (VOTE) or the Weighted Voting strategy (WV). In this study, since
no previous work has been done to determine the most appropriate aggregation
strategy in the case of dementia, the VOTE method has been chosen for its
simplicity and robustness [11]. The binary models with the highest accuracy are
used for the multi-class classification. Where different models presented similar
accuracy, the one with a smaller number of features is preferred.

4 Results

Three binary problems, HCvsAD, HCvsMCI and ADvsMCI, have been inves-
tigated by applying the proposed approach. Considering the four alternative
feature selection combinations, eight SVM models are generated for each binary
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problem, four with ICV normalization and four without it. The best binary clas-
sification models are finally combined to provide a multinominal classification.

4.1 Binary classification

ADNI data (D2) are used for training the binary models and their accuracy is
estimated with both ADNI data (10-fold cross validation) and CADDementia
data (D1). The detailed results for the binary problems are reported in Table 3.
The accuracy for the two cases with and without ICV normalization are provided.
The highest accuracies on the ADNI data (D2) for each binary classification
problems resulted to be as follows.

1) HCvsMCI: 77.1% with ICV normalization, RF filter + SVM wrapper; 2)
HCvsAD: 90% with ICV normalization and Corr. filter; 3) ADvsMCI: 62.1%
with no ICV normalization and RF filter.

The accuracy on the CADDementia data (D1) is computed with a simple
hold-out method and the highest values were obtained without ICV normaliza-
tion in all the three binary problems.

1) HCvsMCI: 66.7% with no ICV normalization and Corr. filter; 2) HCvsAD:
95.2% with no ICV normalization and RF filter; 3) ADvsMCI: 88.9% with no
ICV normalization and RF filter.

4.2 Multi-class classification

The three best binary classification models have been chosen in terms of the
highest accuracy on D1 and are indicated in bold in Table 3. These models
were used for performing the multi-class classification (OVO). In particular,
where equal accuracy has been obtained, the model with less features has been
preferred. Where the number of features is equal too, it has been preferred
the model with less steps applied. The multi-class accuracy is computed with
and without ICV normalization. In the case of ICV normalization, the chosen
models are: for HCvsMCI RF+wrapper (42.9%), for HCvsAD RF filter (42.9%),
for ADvsMCI RF filter (50%). The chosen models with no ICV normalization
are: HCvsMCI Corr. filter (66.7%), HCvsAD RF filter (95.2%), ADvsMCI RF
filter (88.9%).

These models are used to compute the prediction probabilities on D1 and to
generate a score matrix. The VOTE strategy applied to the score matrix of each
test data entry provides the final multinominal classification. The best accuracy
of 70% was obtained with No ICV, while ICV normalization seems to introduce
a significant degradation in the classification process with an accuracy of only
30%.

The training dataset (D2) and the test data set (D1) originated from dif-
ferent studies and, in this work, have not been combined to train the models:
the predictive models obtained from D2 have been tested on D1 to provide an
indication of the level of generalisation that can be achieved when dealing with
heterogeneous data sources.
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4.3 Computation time

The average computation time for each stage of the proposed algorithm is re-
ported in Table 2. The processing, filtering and analysis of the datasets was
performed on a 2.4GHz Intel Core i7 with 8GB RAM running Mac OS X 10.7.5.
Apart from the preprocessing time for the ROI features generation from MRIs,
the most expensive phase of the process is the application of the SVM wrapper
(119.790s). Less time is taken for the SVM wrapper applied after the RF filter
(91.790s) because of the fewer number of features.

Table 2. Mean computation time for each step of the proposed approach.

Step Time

ROI feature extraction 5 hours per subject
Correlation filter 0.836 s
Random Forest filter 7.744 s
SVM wrapper 112.790 s
RF filter + SVM wrapper 91.790 s
OVO classification 0.496 s

5 Conclusions

The present study was designed for searching the best subsets of ROI features
extracted by FreeSurfer from brain MRIs, by applying advanced methods for fea-
ture selection. The main goal was to obtain the highest accuracies on three binary
problems, HC vs MCI, HC vs AD and AD vs MCI so to maximize the accuracy of
multi-class classification by OVO strategy. The proposed workflow sequentially
applies a correlation filter, a Random Forest filter and a Support Vector Machines
wrapper on the data with and without IntraCranial Volume normalization. The
findings suggest that (i) ICV normalization can lead to overfitting and worse
accuracy and (ii) even though the SVM wrapper is more complex and slower
than the Random Forest filter, it does not provide better accuracy. However in
order to provide conclusive results, a more extensive analysis is required.

One limitation of the proposed method is that the same correlation and
variable importance threshold has been used for each binary problem, while,
due to the subtle differences between AD and MCI, distinct values may help to
improve the overall accuracy.

Thus, further work is required in order to determine the best thresholds for
the correlation filter and the best variable importance value for the Random
Forest filter for each binary sub-problems independently.
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Global Disease Index, a novel tool for MTL
atrophy assessment.

Francesco Sensi1, Luca Rei1, Gianluca Gemme1, Paolo Bosco2, Nicola
Amoroso3, Andrea Chincarini1, and The Alzheimer’s Disease Neuroimaging

Initiative�

1 National Institute of Nuclear Physics (INFN), Branch of Genoa, Genoa, Italy
2 LENITEM Laboratory of Epidemiology, Neuroimaging, and Telemedicine - IRCCS

Centro S. Giovanni di Dio - FBF, Brescia, Italy
3 National Institute of Nuclear Physics (INFN), Branch of Bari, Bari, Italy

Abstract. Hippocampi and medial temporal lobe (MTL) structures
are notoriously among the first anatomical districts to be troubled by
Alzheimer’s Disease (AD). Accurate atrophy quantification for tempo-
ral and cortical brain structures is considered a promising marker for
prodromal AD, thus the urge upon finding suitable automatic tools to
perform voxel-based-morphometry tasks such as anatomical structures
segmentation, shapes outlining and features selection.
We propose an original neuroanatomical approach, called “Global Dis-
ease Index” (GDI), stemming from the methodology appeared in [1]. It is
a profound reworking of that procedure, based on local analysis of 9 MRI
regional volumes of interest (VOIs) containing relevant MTL structures.
These VOIs are filtered by means of a Random Forest classifier in order
to enhance peculiar image features found to be the most significant to
discriminate between cognitively normal subjects and Alzheimer’s Dis-
ease patients. These features are subsequently processed with a Random
Forest and a Support Vector Machines classifiers, providing an assess-
ment of MTL atrophy in the form of a classification index.
The procedure proved to be a robust and reliable tool, able to distin-
guish with fine accuracy CN, AD and MCI. On MICCAI’s CADDementia
Grand Challenge provided train data, GDI has demonstrated a detection
power of 93.5%, 68.9%, 92.6% of AUC for CN, MCI and AD cohorts re-
spectively, supporting the reliability of the overall algorithm.

Keywords: Alzheimer’s Disease, MRI, MTL atrophy

Abbreviations: GDI: Global Disease Index, AD: Alzheimer’s Disease; CN: Cogni-
tively Normal; MCI: Mild Cognitive Impairment; MCI-conv: MCI converter; MCI-
nonconv: MCI non converter; VOI: Volume of Interest; RF: Random Forest; SVM:
Support Vector Machines; AUC: Area Under Curve;

� Data used in the preparation of this article were obtained from the Alzheimer’s Dis-
ease Neuroimaging Initiative (ADNI) database (http://www.loni.ucla.edu/ADNI).
As such, the investigators within the ADNI contributed to the design and im-
plementation of ADNI and/or provided data but did not participate in analysis
or writing of this report. A complete listing of ADNI investigators is available at
http://www.loni.ucla.edu/ADNI/Collaboration/ADNI Authorship list.pdf.
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1 Introduction

The past 10 years have seen a growing consensus that the atrophy of medial
temporal lobe structures can potentially be crucial to capture early AD onset
and disease progression by means of T1-weighted MR images analysis. In par-
ticular atrophy of the hippocampus induced by AD may reasonably be a specific
biomarker of pathology progression, known that volume loss in hippocampi is
strictly connected to increasing impairment in cognitive performances of afflicted
the subjects [2]. This fact justifies the need of defining reliable quantification
methods to assess changes in MTL morphology. In the case of hippocampal
volume, a commonly accepted and clinically validated automatic segmentation
procedure would quickly replace traditional time-consuming and rater-dependent
manual tracing protocols.

Automatic approaches are introduced, as the one proposed in [3], permitting
accurate extraction of desired Volumes of Interest (VOIs) from MRI, on which
voxel-based morphometry indicators can be computed.

We present in this work an analysis pipeline build to automatically assess the
progression of brain atrophy brought by AD in medial temporal lobe structures.

The technique, named GDI, is based on major improvements of the feature
selection and classification procedure seen in [1], to study intensity and tex-
tural characteristics of a set selected volumes surrounding MTL structures to
discriminate AD and CTRL subjects.

The core of the methodology is the local analysis of 9 MRI regions of inter-
est containing relevant MTL anatomical structures. These VOIs are filtered by
means of a Random Forest (RF) classifier in order to select, in the target MRI,
image features previously found to be significant to discriminate between CN
subjects and AD patients. These voxels are are processed with classifiers (RF
plus SVM), providing an index assessing overall MTL atrophy.

2 Materials & Methods

We propose an improvement of the procedure designed in [1]. The procedure is
fully automated and needs an average time of 45 minutes to complete a single
subject scan analysis, on an average single core computer with 2.27 GHz, 64
bit system. We noticed that GDI analysis speed depends more on computer
clock-cycle than on its memory or file system characteristics. The most resource
demanding steps in the pipeline are registrations and volumes extractions.

2.1 Subjects

Data used in the preparation of this work consist in a sample of 551 baseline
MRI, of just as many subjects, downloaded from the Alzheimer’s Disease Neu-
roimaging Initiative (ADNI) public database
(http://www.loni.ucla.edu/ADNI/Data). Images were acquired all with 1.5 T
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scanners, whilst scanners’ type can be different and used with different acquisi-
tion protocols.

Statistical information on this training cohort is summarized in Table 1.

Table 1. ADNI train sample.

Cohort Size Gender Age

CN 190 95 M, 95 F 76.6 ± 5.5
AD 195 66 M, 79 F 76.6 ± 7.8
MCI 166 71 M, 45 F 75.5 ± 7.4

AD cohort includes 50 MCI subjects who converted to AD after a follow-up of
2 years (MCI-conv), while MCI cohort includes only MCI subjects who retained
the same clinical assessment after a follow-up of 2 years (MCI-nonconv). The
ground for the decision to merge the MCI-conv into the AD cohort, was to keep
the MCI cohort, with only MCI-nonconv, distinct from the AD [6, 7].

The 30 MRI provided by CADDementia organizers are employed to fine tune
the procedure free parameters. 13 of these scans come from the EMC: Erasmus
MC center (Rotterdam, the Netherlands), 3 scans from the UP: University of
Porto - Hospital de São João, and 14 from the VUMC: VU University Medical
Center (Amsterdam, the Netherlands).

2.2 MRI analysis

The main steps of GDI workflow are image preprocessing (noise reduction and
registration), multiple template-based anatomical structure registration, extracted
volumes intensity normalization, features enhancement, and Random Forest plus
Support Vector Machines features classification.

Each target image is processed with a pyramid noise-filtering algorithm [4]
to promote image uniformity across sites and machines. The difference with
respect to previous paper is that the 3 thresholds Nt necessary to extend to 3D
the algorithm are no longer automatically calibrated for every image and every
direction based on the Structural Similarity Index (SSI) curve, but are replaced
with a single fixed value corresponding to the mean value of all Nt calculated
on training data in the original procedure. The reason behind this choice is that
dynamic threshold denoise was found to much invasive and image dependent. A
fixed threshold sensibly reduces running time of denoising module.

De-noised scans are then registered and re-sampled onto the Montreal Neu-
rological Institute (MNI) ICBM152 reference, with a 1mm3 isotropic grid [5].
The 3-fold registration process of the ancestor paper has been substituted with
a faster, single registration process implemented with Insight Toolkit (ITK,
www.itk.org/). Each incoming image is subjected to a rigid registration with
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7 degree of freedom (similarity registration) and to an affine registration. This
simplified and faster workflow has comparable performances to the original one.

Once preprocessed in this way, each MRI is sampled with 9 VOIs with dif-
ferent dimensions placed around pertinent biological entities in MTL and cortex
(refer to Figure 1), to reduce analysis burden. This VOIs are chosen to include
those temporal lobe structures that are known to be affected in early AD, such
as the entorhinal, perirhinal cortex, hippocampus and parahippocampal gyri, ir-
respective of normal inter- and intra-individual variability. Two additional VOIs
are chosen as control volumes, in regions known to be relatively spared in early
AD.

This extraction operation, producing parallelepiped-shaped volumes contain-
ing the desired anatomical structures, is carried on, in order to preserve accurate
anatomical correspondence, by means of a rigid registration using references; i.e.
a registration of several predefined VOIs onto the subject MNI-normalized brain.
There are at least 8-10 references for each contra-lateral target object.

These template VOIs are designed to capture the morphological differences
among subjects showing varying degrees of neurodegeneration, ranging from
healthy elderly to severe AD. Details on the generation of VOI references can be
found in [3].

VOI extraction step has the advantage of providing a reliable method to
circumscribe noticeable structures and nearby tissues with reasonably high ac-
curacy and reproducibility among subjects and machineries.

The intensity normalization operation is now applied on registered boxes.
Mean values of CSF/Gray Matter/White Matter within the target VOI are
obtained with k-means cluster analysis [8].

New intensity values are obtained by non-linear matching of these 3 values to
the 3 mean segmented cluster values found for a n = 50× 120× 50 voxel region
extracted around the corpus callosum of the MNI template. This mapping is
extended to intermediate intensities with a smooth piece-wise polynomial curve.

All 9 normalized VOIs from each MRI are now filtered to highlight a reduced
set of relevant voxels.

We used 18 different filters (Gaussian mean, standard deviation, range, en-
tropy and Mexican-hat filters calculated on different voxel neighbourhoods),
therefore the feature set for each subject under analysis consists of the ensemble
of all voxels of the filtered VOIs extracted from its MRI. These features are
subsequently pruned by means of RF, keeping the 85% most significant ones in
terms of training set CN vs AD distinction [1].

On the output restricted collection of MRI features a Random Forest and a
Support Vector Machines classifiers are built.

GDI value is then calculated combining the outcome of the 2 classifiers: a
weighted mean of the two values is computed, considering the GDI intervals in
which every classifier is more reliable.
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Fig. 1. (Above Left) VOI size and positioning displayed on the MNI reference image.
VOI n. 1,2: red; VOI n. 3,4: green; VOI n. 5,6: yellow; VOI n. 7: cyan; VOI n. 8,9: ma-
genta. (Above Right) Main gray matter structures captured in the VOIs; [a] potentially
significant regions; [b] control regions. (Below Left) Intensity normalization VOI size
and positioning displayed on the MNI reference image. Such a region serves as basis
for the histogram matching procedure, following the segmentation into CSF/GM/WM.
(Below Right) Example of hippocampal VOI registration on a test subject.
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2.3 Classification

Each subject is given a membership probability to each group (CN, MCI and
AD). Probability Distributions, depicted in Figure 2, are generated with the GDI
values coming from the classification of the 30 CADDementia train images.

The GDI index of a new image is evaluated as member of all PDF curves,
producing 3 probability values in CN, MCI and AD distributions.

These values are normalized to one and the final class is assigned to the
subject with a winner-takes-all scheme (the class with the greatest probability
is the winning one).
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Fig. 2. Probability density estimates calculated from the 30 CADDementia training
images. The restricted number of samples is the reason why curves show some bumps.
The integral of each curve equals 1.

Fig. 3. Performances for the distinction of CN from AD (black curve), CN from MCI
(blue curve) and MCI from AD (magenta curve) on CADDementia training sample
(Left) and on ADNI sample data (Right).
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3 Results

GDI index discriminates, in Leave-20-Out cross-validation, CN from AD, CN
fromMCI and MCI from with AUC values of 0.97 (sensitivity = 0.94 @ specificity
= 0.90), 0.71 (sensitivity = 0.77 @ specificity = 0.78) and 0.85 (sensitivity 0.86
@ specificity = 0.64).

The classification results on CADDemetia train dataset stands at AUC values
of 0.93 for CN vs AD discrimination (sensitivity = 0.92 @ specificity = 0.88),
AUC = 0.78 for CN vs MCI (sensitivity = 0.92 @ specificity = 0.67) and 0.8 for
MCI vs AD distinction (sensitivity = 0.89 @ specificity = 0.62).

This outcomes can also be seen in terms of One-versus-All classes detection.
In this case CN subjects are identified with AUC of 0.935, MCI with AUC of
0.689 and AD with AUC of 0.926. The accuracy of the CN/MCI/AD classifica-
tion on the CADDementia training data is 0.733. Performances are represented
in Figures 3 and 4.

On the other hand blind classification of the test population delivers 146
subjects as cognitively normal, their GDI index centered on a mean value of
0.85 with a standard deviation of ±0.06, 125 as mild cognitive impairment (GDI
in 0.51± 0.16) and 83 as Alzheimer’s Disease (GDI in −0.31± 0.29).

Classification index strictly depends on the goodness of the registration out-
come. At the end of the automatic process we visually checked the registered
images finding that a very little percentage of them has been poorly registered.
This fact had not prevented the algorithm to proceed, so that we have no missing
data in our analysis. However we reckon that this fact produces an uncertainty
on our results which can be quantified: 3% on ADNI and 6 subjects in 354 on
the CADD test sample.

4 Discussion

GDI procedure needs an average cpu-time of 45 minutes to process a 1.5T MRI
and provides an index that is an assessment of MTL atrophy progression. GDI
index reliability strongly depends on image registration process, and we noticed
that approximately 3% of processed image is not properly registered. Neverthe-
less this index has been used to detect CN, MCI and AD cohorts in CADDe-
mentia train dataset with fine accuracy (93.5%, 68.9%, 92.6% respectively).

Incidentally, we have developed a filter testing registration accuracy by means
of simple correlation coefficient with the reference template, in a way that we’ve
been able, during training phase with ADNI data, to reject little correlated
registration outcomes or to re-register them with more suitable parameters.

For what regards classification results, the not so optimal performances on
CN vs MCI distinction can be explained looking at the consistent overlap of their
probability distributions. On the contrary, MCI and AD present a delicate area
of overlap (around 0.2), while CN and AD populations are almost completely
separated in terms of GDI index (Figure 2).

MICCAI 2014 - Challenge on Computer-Aided Diagnosis of Dementia Based on Structural MRI Data

98



8

Fig. 4. (Above) ROC curves for the detection of CN, MCI and AD for all training data
of CADDementia challenge together, and (Below) considered separately for each of the
three provided database subsets EMC, UP, VUMC (see 2.1).

5 Conclusions

In the current study we have shown an automatic system providing an index
working as an objective measure of hippocampal and temporal lobe atrophy and
its performance on the training and test data available in CADDementia.

The algorithm characteristics - such a speed and required computational
resources - make it suitable to work on grid environment or to be provided as
remote web-service.
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Abstract. We present an intuitive geometric approach for analysing the
structure and fragility of T1-weighted structural MRI scans of human
brains. Apart from computing characteristics like the surface area and
volume of regions of the brain that consist of highly active voxels, we
also employ Network Theory in order to test how close these regions are
to breaking apart. This analysis is used in an attempt to automatically
classify subjects into three categories: Alzheimer’s disease, mild cognitive
impairment and healthy controls, for the CADDementia Challenge.

Keywords: MRI, dementia, mild cognitive impairment, voxel, auto-
matic, diagnosis, graph Laplacian, Network Theory

1 Introduction

The UK government reports5 that there are currently 800,000 dementia suf-
ferers in the UK alone, with the disease costing the economy £23 billion per
year. By 2040 the government estimates the costs associated with the disease

* Data used in preparation of this article were obtained from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investi-
gators within the ADNI contributed to the design and implementation of ADNI
and/or provided data but did not participate in analysis or writing of this report. A
complete listing of ADNI investigators can be found at http://adni.loni.usc.edu/wp-
content/uploads/how to apply/ADNI Acknowledgement List.pdf

5 https://www.gov.uk/government/policies/improving-care-for-people-with-dementia
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will triple as the number of dementia sufferers increases to 1.6 million people.
The government is responding through a number of initiatives including: The
National Dementia Strategy6 published in 2009; The Prime Minister’s Dementia
Challenge7 launched in 2012; and by increasing the annual funding of dementia
research to ≈ £66 million by 2015. As well as gaining a better understanding
of the disease, the government aims to increase diagnosis rates so that they are
among the best in Europe. Clearly the risk of neurological diseases, such as
Alzheimer’s disease (AD), to public health is of international importance and as
such cross-cutting, interdisciplinary research combining ideas from across fields
has the potential to contribute to the future well-being of global health.

The CADDementia Challenge8 was established by the Biomedical Imaging
Group Rotterdam, Erasmus MC, Rotterdam, in order to provide a standardised
evaluation framework for the Computer-Aided Diagnosis of Dementia, based
on T1-weighted structural Magnetic Resonance Image (MRI) data. The primary
aim of the CADDementia Challenge is to objectively validate the different image-
based diagnosis/classification methods that are emerging from research centres,
such that suitably robust techniques may be identified as candidates for clinical
use. The CADDementia competition requires participants to8: i. use a common
dataset for training algorithms, as well as ii. a previously unseen multi-centre
test dataset (to avoid over-training), and iii. to perform a multi-class diagnosis
of Alzheimer’s disease, Mild Cognitive Impairment (MCI) and controls.

We present an intuitive geometric algorithm for analysing the structure and
fragility of MRI data. Apart from computing characteristics like the surface area
and volume of regions of the brain that consist of highly active voxels, we also
employ Network Theory[2] in order to test how close these regions are to breaking
apart. This analysis is used in an attempt to classify structural MRI scans into
three categories: CN (controls), MCI and AD.

The algorithm presented in this paper was executed over MRI data from
the CADDementia and ADNI datasets using up to 120 computer CPU cores
simultaneously to perform the analysis. However, with minor modifications to
the job submission and data handling mechanisms currently employed, the same
algorithm could be scaled up to massive numbers of CPU cores, provisioned
on demand, through private and/or public Cloud providers, thereby potentially,
allowing health authorities to offer screening as part of routine health checks to
a larger proportion of the population and at greater frequencies.

2 The geometric and network structure of MRI data

Mathematically, MRI data can be considered as a collection of small cuboids
(voxels) and for each of them we have a non-negative value which represents
tissue properties. A central point in our approach is that in AD part of the neural

6 https://www.gov.uk/government/publications/living-well-with-dementia-a-
national-dementia-strategy

7 http://dementiachallenge.dh.gov.uk/
8 http://grand-challenge.org/site/caddementia/home/
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mass degenerates progressively, therefore it is reasonable to assume that negative
changes in the T1 signal gradients would be a feature of neural degeneration (this
would be reverse for T2). We use these changes in voxel values as markers of
degeneration in order to trace a path of similarity over long distances in the
brain.

A 3D T1-weighted MRI image consists of n1×n2×n3 voxels and f(i, j, k) ≥ 0
is the level of T1-weighted signal recorded in voxel (i, j, k). Then we define

M := max{f(i, j, k) | 1 ≤ i ≤ n1, 1 ≤ j ≤ n2, 1 ≤ k ≤ n3}.
Further, for each voxel, instead of the recorded signal, f(i, j, k), we consider a
normalised signal,

g(i, j, k) :=
f(i, j, k)

M
, (1)

where we now have 0 ≤ g(i, j, k) ≤ 1 for all voxels; we normalise the signal
according to (1) for each brain. We can think of this as a way of introducing a
similar scaling across all brains. The idea is to focus on the part of the brain
(i.e. on those voxels) for which the signal is above a certain threshold, θ. Math-
ematically, this set is denoted by

Aθ := {(i, j, k) | g(i, j, k) ≥ θ, 1 ≤ i ≤ n1, 1 ≤ j ≤ n2, 1 ≤ k ≤ n3}.
We work with θ = 0.6, 0.61, 0.62, . . . , 0.8. This follows from both computa-

tional and physiological reasons: computing eigenvalues for a whole brain matrix
is computationally intractable, but more importantly starting at a 0.6 threshold
allows us to generate connectivity networks based on primarily white matter
values (see Figures 1 & 2).

For each brain, we consider the 3D set Aθ and compute its surface area, Sθ,
and its volume, Vθ; we also compute a measure of the fragility of its structure,
fθ, i.e how close Aθ is to “breaking” apart into smaller components.

Apart from being a geometrical 3D object, we can think of Aθ as a network,
denoted by Nθ, in which two voxels are connected if they share a face or an edge
(but not a corner).

The advantage of interpreting Aθ, as a graph, or a network Nθ, is that we
can apply certain techniques from Spectral Graph Theory. Each graph/network
can be represented with a matrix. Computing eigenvalues of such a matrix gives
us a spectrum - an array of values that describes some structural characteris-
tics of the given graph. The most widely used matrices assigned to graphs are
adjacency, Laplacian or normalised Laplacian matrices. For a review of using
spectra of graphs in computational biology see [1]. A comprehensive study of
a normalised Laplacian spectrum with detailed definitions and many examples
of its applications is given in [2]. A useful property of the eigenvalues of the
normalised Laplacian matrix is that they are all real and are between 0 and 2
for any number of vertices and edges. Furthermore, the number of zero eigen-
values correspond to the number of connected components of the corresponding
graph [2]. The smallest positive eigenvalue of the Laplacian matrix is called al-
gebraic connectivity [4] and is an indicator of the robustness of the graph [7] to
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Fig. 1. A histogram showing the distribution of the intensities across a brain; the two
peaks roughly indicate the range of intensities for white and grey matter. We can see
that by choosing θ ≥ 0.6 we predominantly select white matter.

Fig. 2. Coronal view of a single brain depicting the tissue that is selected as θ increases
from 0.6 to 0.8. Here, for illustrative purposes, the fraction θ is over the 95th percentile
value, whereas in reality we work with a fraction θ of the absolute maximum. The
main disadvantage of the latter approach is that it is sensitive to noise, but one of
the advantages is that the size of the brain that is left after thresholding becomes
computationally manageable.

vertex and edge failures and to betweenness in networks, which can help with
identifying communities [8]. The eigenvector corresponding to algebraic connec-
tivity, but also to the second smallest normalised Laplacian eigenvalue is used
for spectral clustering [10].
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Now, if Aθ is split into m disjoint parts, this will correspond to Nθ consisting
of m connected components, which in turn corresponds to m eigenvalues equal
to zero in the normalised Laplacian spectrum of Nθ. The eigenvalues close to
zero (around the second smallest normalised Laplacian eigenvalue) give us an
indication of the fragility of Aθ. The larger the number of eigenvalues that are
close to zero, the more fragile (i.e. sensitive to breaking apart) Aθ is. Hence,
given a threshold, θ, we denote by fθ the number of eigenvalues that are close
to zero in that particular Nθ, and call this fragility. Here, by ‘close to zero’ we
mean those eigenvalues that are less than 0.001, a number which we determined
experimentally.

Additionally, we have to compute the surface area, Sθ, and the volume, Vθ;
since the values of n1, n2 and n3 (defined at the beginning of this section) can be
different (for example, between the three centres EMC, UP and VUMC in the
training and test sets) we assumed in our computations that the edges of a single
voxel are equal to 1

n1
, 1

n2
and 1

n3
, respectively. From here one can compute the

area of each face of a voxel, as well as its volume (the latter is equal to 1
n1n2n3

).
Once re-scaled the surface area and volume of Aθ can be computed.

We calibrated the algorithm against the CADDementia training set by com-
bining Sθ (surface area), Vθ (volume) and fθ (fragility), with the age of the
subject and used these four features (numbers) as predictors for the stage of
neural degeneration (CN, MCI or AD). We firstly used gender to split the sub-
jects apart into two groups.

For illustration purposes, let us consider the group of 13 females (out of 30
subjects) from the training set. For a fixed threshold, θ, we use multinomial
logistic regression, which is discussed in detail in [5], [9] and [3]. Specifically,
MATLAB is used to compute the multinomial logistic regression (the function
mnrfit) with predictors Xθ = [age, Sθ, Vθ, fθ] and the responses, Y , are the labels
for the diagnoses of the subjects (0 = CN (control); 1 = MCI; and 2 = AD). As
an output of mnrfit we get a matrix of coefficient estimates, Bθ. This derives
Bθ, we then remove the labels, Y (diagnoses); using only Bθ and (the same)
predictors, Xθ, we compute the probabilities for each subject being diagnosed
with CN, MCI or AD. The latter probabilities are computed using the MATLAB
function mnrval. The output for θ = 0.66 is given in Table 1 (columns 4, 5 and
6). Amongst the probabilities pCN , pMCI and pAD we choose the highest, and
this determines the class to which a subject is assigned (the third column of
Table 1).

For each θ, as in Table 1, we compare our predictions with the set of diagnoses
and choose the values of θ for which we get best agreement. In all the tests we
performed on the CADDementia training set as well as with a large subset of
the ADNI dataset, we consistently found, across both male and female groups,
that θ = 0.63, 0.64, 0.65, 0.66 and θ = 0.71, 0.72 gave the best fit between the
diagnoses and our predictions. However, in our submission for the CADDementia
challenge we chose θ = 0.71 for females and θ = 0.63 for males because these
were the most stable values we were getting, that is, small changes in θ did not
lead to significant changes in our predictions.
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Table 1. The output from the MATLAB function mnrval applied to the group of
female subjects on the training CAD dataset, θ = 0.66. The second column, that is,
the diagnosis of each subject, is only given as a reference here. The input parameters
to the the function mnrval are only the matrix Bθ and the (matrix of) predictors, Xθ.
The function mnrval outputs the probabilities pCN , pMCI and pAD.

subject ID diagn. predict. pCN pMCI pAD

train emc 002 2 1 0 0.78 0.22

train emc 003 0 0 0.99 0.005 0.003

train emc 008 0 0 0.89 0.0008 0.1

train emc 009 2 2 0 0 1

train emc 011 1 1 0 0.87 0.13

train up 001 2 2 0 0.004 0.995

train up 002 1 1 0 0.64 0.36

train vumc 004 2 2 0 0.03 0.97

train vumc 005 0 0 0.98 0.01 0.01

train vumc 008 2 2 0 0 1

train vumc 010 1 1 0.004 0.92 0.08

train vumc 012 1 1 0.05 0.74 0.21

train vumc 013 2 2 0.1 0.001 0.90

Given our value for θ we compute the matrix Bθ on female subjects in the
CADDementia training set. Further, we can find the corresponding predictors,
[age, Sθ, Vθ, fθ], for the female subjects from the CADDementia test data set.
Therefore, we can use Bθ with those new predictors as input parameters to
the function mnrval and derive the corresponding probabilities, pCN , pMCI and
pAD.

3 Materials

The algorithm described in §2 was tested against the CADDementia training set
as well as suitable data from the ADNI database as described next.

3.1 CADDementia Data

The CADDementia dataset9 comprises of 384 T1-weighted 3T MRI scans in
gzipped Nifti format of subjects with AD, MCI and healthy controls, that were
captured from multiple different centres. The original data (6.2 Gbytes10) as well
as a non-uniformity corrected version (16 Gbytes10) is provided and all data is
reported as being clinically-representative. A training subset comprising of 30
scans that are reported to be equally distributed over the originating centres,
as well as the corresponding diagnostic labels are provided. The demographic
metadata comprises of age and gender. Note that we used the non-uniformity-
corrected version of the dataset.
9 http://grand-challenge.org/site/caddementia/download data

10 gzip compressed.
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3.2 ADNI Data

The Alzheimers Disease Neuroimaging Initiative (ADNI) database11 was launched
in 2003 by the National Institute on Ageing (NIA), the National Institute of
Biomedical Imaging and Bioengineering (NIBIB), the Food and Drug Adminis-
tration (FDA), private pharmaceutical companies and non-profit organisations,
as a $60 million, 5-year public-private partnership. The primary goal of ADNI
has been to test whether serial magnetic resonance imaging (MRI), positron
emission tomography (PET), other biological markers, and clinical and neu-
ropsychological assessment can be combined to measure the progression of mild
cognitive impairment (MCI) and early Alzheimers disease (AD). The initial goal
of ADNI was to recruit 800 subjects but ADNI has been followed by ADNI-GO
and ADNI-2. To date, the ADNI Website reports that these three protocols have
recruited over 1500 adults, ages 55 to 90, to participate in the research, consist-
ing of cognitively normal older individuals, people with early or late MCI, and
people with early AD.

Only T1-weighted structural 3T MRI data was selected for use in our inves-
tigation as contained in the following ADNI collections:

– AD-{bl,m06,m12,m24}-3.0T
– ADNI1:{Baseline,Annual 2Yr,Complete{1,2,3}Yr}
– MCI-{bl,m06,m12,m18,m24,m36}-3.0T
– Normal-m{06,12,24,36}-3.0T

resulting in multiple scans being retrieved for each of 189 subjects (33 Gbytes
non-compressed), with age ranging from 58 to 93 years old.

4 Compute platform

The computers used for this study (see Table 2) comprised of workstations from
our Analysis Laboratory (AL) as well as our small Infiniband-connected compute
cluster (IB), all of which combine to report a total of 120 Intel CPU cores,
to a HTCondor12 batch queue. The Gentoo Linux13 operating system, with
kernel 3.14.4-gentoo x86 64 was used across all machines. The notation ’S-R’
in the Disk column indicates that the system disk is SSD and the scratch disk
is rotational. The HT column indicates if hyper-threading14 was enabled.

5 Workflow and execution times

Conceptually the algorithm and all processing presented in this paper is entirely
automated, however in terms of our current workflow there are presently a num-
ber of steps between the stages, that we invoke manually (e.g. instruct a script
to execute).

11 http://adni.loni.usc.edu
12 HTCondor version 7.8.8, see http://research.cs.wisc.edu/htcondor
13 http://www.gentoo.org
14 http://en.wikipedia.org/wiki/Hyper-threading
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Table 2. The computational resources used during this study

# Grp Nodes(s) Qty Model GHz # # HT Mem GPGPU Disk Network
CPU Cores (GB)

1 AL ncpc{50-62} 13 i7-4770 3.40 1 8 � 32 C2050 S-S GigE
2 AL ncpc5 1 i7 920 2.67 1 4 × 24 C2050 S-S GigE
3 IB ncpc139 1 X3460 2.80 1 4 × 16 - S-R QDR IB
4 IB ncpc14{1,2} 2 i7 950 3.07 1 4 × 24 - S-R QDR IB
6 IB ncpc14{5-9} 5 X5570 2.93 2 8 × 24 - S-R QDR IB
7 IB ncpc150 1 X5690 3.46 2 12 × 48 3×C2050 S-S QDR IB

10 SRV ncsrv{1,2,3,4} 4 - - - - - - - R-R QDR IB

The workflow is described thus:

1. Compile Matlab code to a standalone binary - The Matlab code de-
scribed in §2 is compiled to a standalone binary using the Matlab Compiler
in preparation for license-free parallel execution15 across the compute nodes.

2. Download the CADDementia and ADNI Data - Given the CADDe-
mentia data consisted of relatively few files, we elected to download manually,
although this could potentially have been scripted. We obtained the ADNI
data via16.

3. Unpack data - This operation is scripted and can either be performed
sequentially from a single machine or in parallel using, e.g. our HTCondor
installation.

4. Brain extraction - Brains are extracted from all the scans using the fol-
lowing FMRIB FSL17 roi and bet commands in a data parallel way on
our cluster: standard space roi <in file> <intermediate file> -b;

bet <intermediate file> <output file> -f 0.15

5. Process the data - The compiled Matlab code is executed in a data parallel
way (each data file is submitted as an independent task to the batch queue)
via our computational resources. Results are written back to a single location
on our network file system.

6. Final classification - The results from the previous step (together with
some of the demographics) are used as predictors (discussed in §2) in order
to do the final classification of the subjects (into the following classes: CN,
MCI and AD). The classification is done in MATLAB, using the functions
mnrfit and mnrval.

The preprocessing task in workflow step #4 (brain extraction) takes less than
90 seconds for a single brain scan, and ≈ 15 minutes for all 354 CADDementia
test brains to be extracted in parallel across the cluster (sequentially this same
operation could take up to ≈ 8 hours to complete on a single computer).

15 http://www.mathworks.co.uk/products/compiler/mcr
16 https://ida.loni.usc.edu/login.jsp
17 FMRIB Software Library, http://fsl.fmrib.ox.ac.uk/fsl/fslwiki
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The length of the computation (workflow step #5) of a single MRI scan
depends, mostly, on the amount of voxels that were left in the set Aθ (de-
fined in §2) and also, in the computation of the spectrum of the normalised
Laplacian matrix, on how fragile or connected Aθ is as a 3D structure. There-
fore, MRI scans in which the set Aθ was rather large took longer to compute
(the length being dependant on the complexity of the MATLAB eigenvalue
solver, eigs). For example, workflow step #5 takes anywhere between 6 and
24 minutes for the majority of the brain scans processed. However, twenty six
of the 354 CADDementia test scans took considerably longer with, for example,
stripped test vumc 116.nii, requiring ≈ 60 hours of actual compute time and
a memory footprint of 4.1Gbytes. Moreover, despite having an otherwise empty
batch queue there were more data items to be processed from the CADDementia
test dataset than the available processors (exposed by the batch queue) across
our local compute resources, hence the overall end-to-end wall clock time to get-
ting a result for the scan was in fact 87 1

2 hours, after taking into account the
time the job spent languishing in the queue. The final classification (workflow
step #6) takes less than a minute on a single machine.

The condor submit files for workflow steps #3,4,5 are automatically gener-
ated by a BASH18 script that dynamically identifies compute tasks based on the
previously downloaded data.

6 Conclusions

The results that we observed while testing our method with the CADDementia
training set (consistently, less than 20% incorrect predictions) and the ADNI
dataset (consistently, less than 35% incorrect predictions) appear promising.
The approach we have presented here is intuitive and easy to implement. We
believe it is a potential step towards employing Network Theory in the analysis
and classification of neural diseases, and as such it can be extended to include
more sophisticated techniques from Network Theory.

This technique is agnostic to underlying tissue properties as well as to the
nature of the signal. We have previously applied a similar approach to resting
state fMRI data [6]. For the purposes of this competition we have intentionally
biased the algorithm in favour of white matter by stepping up the threshold
values. Alternatively, we could use a step down method to capture properties of
grey matter. It is also possible to target specific tissues using a gating procedure.

A further advantage, which we consider important, is that the workflow can
be fully automated and potentially, this can be implemented in such a way that,
for example, a computer Web Service running in the cloud would ingest MRI
data and return a diagnosis within a short time over the network; issues of
trust, privacy, authorisation and security would need to be looked at to ensure
compliance with the legislation for medical data protection.

The work we have described takes a data parallel approach to processing
many scans at the same time, and for the most part, results are obtained within

18 http://en.wikipedia.org/wiki/Bash %28Unix shell%29
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a matter of minutes. However as we have seen, MRI scans in which the set Aθ

is rather large can take substantial amounts of time to compute, and thus are
candidates for a finer granularity of parallelism, which we shall investigate in
future work. In addition to increasing the speed of the diagnosis we can also
improve accuracy by applying our approach to the parts of the brain whose
structural changes are known to be highly correlated with the presence or absence
of AD and/or MCI.
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Abstract. This paper proposes a structural magnetic resonance imag-
ing (MRI) biomarker that combines a range of individual biomarkers
(cortical thickness measurements, hippocampal shape, hippocampal tex-
ture, and volumetric measurements) for the purpose of multi-class clas-
sification of Alzheimer’s disease, mild cognitive impairment and, normal
controls. The combination is achieved by entering the biomarkers as fea-
tures in a linear discriminant analysis. The fully automated method is
trained on a combination of two publicly available datasets and is eval-
uated on the training set from the CADDementia challenge. Test set
scores using two different priors are submitted to the same challenge.

1 Introduction

Structural magnetic resonance imaging (MRI) is an integral part of the diagnos-
tic work flow in many memory clinics. The modality allows for non-invasive in
vivo inspection of the degree and the location of brain atrophy, a hallmark of
several dementias including Alzheimer’s disease (AD), the most frequent type.
The importance of structural MRI has been underlined by the inclusion of MRI
volumetry as a surrogate biomarker of atrophy in international diagnostic guide-
lines for AD [13] and its prodromal stage, mild cognitive impairment (MCI) due
to AD [2].

Volumetry, and in particular hippocampal volumetry, is in general the most
widely studied and used MRI biomarker of AD, and there are already efforts to-
wards standardization of this biomarker [8, 12]. However, it is evident that there
are other sources of information, than what is captured by volumetry, to extract
from a structural MRI scan. This include cortical thickness [14] as well as less
established biomarkers such as the hippocampal shape [1] and the textural pat-
terns within the hippocampal tissue [15, 17]. Both shape and texture have shown
to provide volume-independent diagnostic or prognostic information, and to im-
prove prediction of conversion from MCI to AD when combined with volume [1,
15, 17]. Cortical thickness may be more reliable than volume in detecting differ-
ences between MCI and AD [14] and combining cortical thickness measurements
with volumetric measurements has shown good NC vs. AD discrimination [18].
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In this study, we propose to combine a range of volumetric measurements
with cortical thickness measurements, hippocampal texture, and shape, in order
to obtain a combination biomarker that uses more of the information contained
in a structural MRI scan. Such a biomarker has potential of improved diagno-
sis of MCI and AD compared to, e.g., a pure volumetry-based biomarker. To
the best of our knowledge, this is a unique combination of basic MRI biomark-
ers not tried before. The combination is achieved by entering all biomarkers as
features in a linear discriminant analysis (LDA). The proposed method is devel-
oped and trained on a combination of MRI scans from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) and the MRI imaging arm of the Australian
Imaging, Biomarker & Lifestyle Flagship Study of Aging (AIBL). The trained
method is then evaluated on the training set from the Computer-Aided Diag-
nosis of Dementia based on structural MRI data challenge4 (CADDementia),
a challenge at the 17th International Conference on Medical Image Computing
& Computer-Assisted Intervention. Two different test set scores using different
priors are further submitted to the CADDementia challenge.

2 Data

The following five datasets are used: the “complete annual year 2 visits” 1.5-T
dataset from the collection of standardized datasets recently released by ADNI
[19]; a subset of manual hippocampal segmentations from the Harmonized Hip-
pocampal Protocol (HHP) [8] and associated MRI scans; the MRI imaging arm
of AIBL [5]; and the CADDementia training and test sets. Table 1 summarizes
the characteristics of the datasets.

The ADNI dataset and the AIBL dataset are merged into one combined
dataset (termed ADNI+AIBL) that is used for training, and HHP is used in a
special purpose hippocampal segmentationmethod described in Section 3.3. The
CADDementia training set is used for evaluation. Finally, the CADDementia test
set is classified using the trained combination MRI biomarker, and the obtained
scores are submitted to the CADDementia challenge.

All MRI scans were conformed to 1 × 1 × 1 mm3 resolution followed by
bias correction. Both operations were performed using FreeSurfer (version 5.1.0,
default parameters) [7].

3 Individual MRI Biomarkers

A range of structural MRI biomarkers are used in the proposed combination
biomarker, which are the following: volumetry of brain structures and of the
ventricles, cortical thickness measurements, hippocampal shape, and hippocam-
pal texture. These biomarkers are detailed in the following subsections, and an
overview is provided in Table 2.

4 http://caddementia.grand-challenge.org/
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Table 1: Characteristics of the datasets.

n Age, years Male MRI field strength
(mean±std) (%) (1.5-T/3-T)

ADNI

Total 504 75.3±6.5 57.9 504/0
NC 169 76.0±5.1 50.9 169/0
MCI 234 74.8±7.0 66.5 234/0
AD 101 75.3±7.4 50.5 101/0

HHP

Total 40 74.1±7.4 47.5 40/0
NC 12 76.9±6.2 41.7 12/0
MCI 11 70.9±6.8 54.6 11/0
AD 17 74.2±8.6 47.1 17/0

AIBL

Total 145 75.4±7.4 44.6 1/144
NC 88 75.2±7.2 47.7 1/87
MCI 29 77.5±7.1 51.7 0/29
AD 28 73.6±8.1 35.7 0/28

CADDementia train

Total 30 65.2±7.0 43.3 0/30
NC 12 62.3±6.3 25.0 0/12
MCI 9 68.0±8.5 44.4 0/9
AD 9 66.1±5.2 66.7 0/9

CADDementia test Total 354 65.1±7.8 60.2 0/354

3.1 FreeSurfer Volumetry

Sub-cortical and ventricular volumetricmeasurements were computed using cross-
sectional FreeSurfer (version 5.1.0, default parameters) [7]. We used measure-
ments from ROIs provided by FreeSurfer (i.e., in the Aseg atlas). Bilateral ROIs
were joined. In addition to individual ROIs, we also computed total ventricular
volume and whole brain volume, resulting in a total of 7 volumetric FreeSurfer
measurements. All volumetric measurements were normalized for head size by
dividing by the intra-cranial volume (ICV) also computed during the cross-
sectional FreeSurfer pipeline.

3.2 FreeSurfer Cortical Thickness

Cortical thickness measurements were computed using cross-sectional FreeSurfer
(version 5.1.0, default parameters) [6]. We used measurements from the ROIs in
the Desikan-Killiany atlas that were joined into the four lobes and the cingulate
cortex5. Left and right hemispheres were further joined, resulting in a total
of 5 cortical thickness measurements. We did not normalize cortical thickness
measurements for head size (i.e., ICV) [18].

5 http://surfer.nmr.mgh.harvard.edu/fswiki/CorticalParcellation
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3.3 Hippocampal Volume

In addition to FreeSurfers estimate of the hippocampal volume, we also computed
the hippocampal volume using a special purpose algorithm. This was motivated
by the fact that hippocampal volume is the most widely used MRI biomarker of
AD [12] and FreeSurfer is not optimized for this structure specifically. The left-
and right hippocampus were segmented separately using amulti-atlas, affine reg-
istration, non-local patch-based segmentation (N-L Patch) technique [4, 3]. The
atlas comprised 40 segmentations from HHP [8] (12 NC, 11 MCI, 17 AD). All
40 HHP segmentations were used as atlases during pre-selection, but only the
9 most similar contributed to the final segmentation. A subset of 15 HHP seg-
mentations were used to cross-validate parameters (number of atlases used after
pre-selection, cubic patch size, and search volume size) using Dice’s coefficient.
The bilateral volume was computed and divided by FreeSurfers estimate of ICV.
N-L Patch has previously demonstrated a better AD diagnostic performance
than static FreeSurfer [4].

3.4 Hippocampal Shape

Two hippocampal shape scores (for the left and right hippocampus, respectively)
were computed as well. In a spirit similar to [1], a shape descriptor was computed
by aligning each hippocampus surface to a template hippocampus using iterative
closest point (ICP), followed by amapping of 30 uniformly distributed landmarks
from the template to the hippocampus. The set of hippocampi, each now repre-
sented by 30 landmarks, were all aligned using generalized Procrustes alignment
[9]. Finally, principal component analysis was applied the set of aligned hip-
pocampus landmarks, and the components explaining 90 % of the variance were
retained. This representation was used as features in a naive Bayes classifer. The
feature extraction was performed on all data simulteanously, i.e., on the combi-
nation of ADNI+AIBL and the CADDementia data. Subsequently, only NC and
AD observations from ADNI+AIBL were used for training of the naive Bayes
classifier. The trained classifier was finally applied to score the CADDementia
data. The FreeSurfer hippocampus segmentation was used to defined the ROI
in each MRI scan. The whole procedure was computed for the left and the right
hippocampus separately, resulting in two hippocampal shape scores.

3.5 Hippocampal Texture

A hippocampal texture score was computed using a texture descriptor recently
proposed for quantification of chronic obstructive pulmonary disease in com-
puted tomography [16] in combination with a support vector machine (SVM)
with a radial Gaussian kernel. This specific MRI biomarker has previously shown
good results [15, 17]. The texture descriptor comprised marginal filter response
histograms of a 3-dimensional, rotation-invariant,multi-scale, Gaussian derivative-
based filter bank with the following scales: 0.6, 0.86, 1.2, and 1.7 mm. Compared
to [16], the Gaussian filter was excluded in order to be invariant to the lack
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of a standardized scale in MRI. The morphologically post-processed bilateral
FreeSurfer hippocampus segmentation was used to define the ROI. The texture
biomarker was trained on all NC and AD observations from ADNI+AIBL. The
training involved estimation of adaptive histogram binning for the different fil-
ters, and training of the SVM to separate NC from AD. During SVM training,
the width of the radial Gaussian kernel and the regularization parameter was
estimated using grid search in a nested cross-validation loop. The SVM was sub-
sequently trained on all training data using the optimal parameter combination.

4 Combination Biomarker

The individual MRI biomarkers {x(i)}
i=1...N were combined by entering them

as features to a regularized linear discriminant analysis (LDA) with λ added to
the diagonal of the covariance matrices [10]. Prior to entering the LDA, each
individual biomarker x was z-score transformed dependent on the age of the
subject according to z = (x − μage)/σage. The age-dependent weighted mean,
μage, and the age-dependent weighted standard deviation, σage, of the biomarker
used in the transformation were estimated from the training set using an adaptive
width Gaussian interpolation kernel centered on the respective age. The age-
dependent z-score transformation was applied within each group, resulting in a

tripling of the features
{
z
(i)
NC, z

(i)
MCI, z

(i)
AD

}
i=1...N

. The LDA with λ = 0.001 was
trained directly for the three-class problem of discriminating NC, MCI, and AD
using ADNI+AIBL, and the Shark C++ library was used for this purpose [11].

Table 2: Overview of individual MRI biomarkers. Hippocampal shape and
hippocampal texture uses the FreeSurfer hippocampal segmentation as ROI.
FreeSurfer is not trained.

Biomarker Segmentation method Training

Cortical thickness
Frontal lobe FreeSurfer -
Parietal lobe FreeSurfer -
Temporal lobe FreeSurfer -
Occipital lobe FreeSurfer -
Cingulate cortex FreeSurfer -

Volumetry
Amygdala FreeSurfer -
Caudate nucleus FreeSurfer -
Hippocampus FreeSurfer/N-L Patch -/HHP
Pallidum FreeSurfer -
Putamen FreeSurfer -
Ventricular FreeSurfer -
Whole brain FreeSurfer -

Hippocampal shape FreeSurfer ADNI+AIBL
Hippocampal texture FreeSurfer ADNI+AIBL
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5 Results

The combination biomarker was evaluated by training on ADNI+AIBL and
scoring of the CADDementia training dataset. We also report average 10-fold
cross-validation performance on ADNI+AIBL with splits stratified on group
and dataset. The python script supplied by the CADDementia team is used
for this purpose, and the computed performance measures are described on the
CADDementia website6. The results are summarized in Table 3, and associated
receiver operating characteristic (ROC) curves and areas under the ROC curves
(AUCs) are shown in Figure 1 and confusion matrices in Table 4.

Table 3: Performance measures.

classification true positive fraction AUC
accuracy NC MCI AD Total NC MCI AD

CADDementia train 73.3 91.7 44.4 77.8 83.2 86.6 68.3 95.8

ADNI+AIBL 62.2 79.8 53.2 45.7 78.4 85.5 68.1 82.7

The proposed method is fully automated. Approximate computation time in
order to classify a new MRI scan is presented in Table 5 where we also provide
the computation time of individual components of the method.

(a) CADDementia train (b) ADNI+AIBL

Fig. 1: Per-class ROC curves and AUCs for the proposed combination biomaker.

Table 4: Confusion matrices. Rows are predicted and columns are true class.
(a) CADDementia train

NC MCI AD

NC 11 3 0
MCI 1 5 2
AD 0 1 7

(b) ADNI+AIBL

NC MCI AD

NC 205 74 13
MCI 48 140 57
AD 4 49 59

6 http://caddementia.grand-challenge.org/evaluation/
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Table 5: Per subject computation time divided into components.

Total (+FreeSurfer) FreeSurfer N-L Patch Shape Texture Combiner

∼1 (19) h ∼18 h1
∼40 min ∼0.5 min ∼15 min ∼1 sec

1 Median processing time due to high variability with some extreme out-
liers.

As seen from the confusion matrices, there was a tendency of classifying sub-
jects as too healthy (MCI as NC, AD as MCI). We therefore also produced a
second score using the following priors optimized for the CADDementia train-
ing set: P (NC) = 1/8, P (MCI) = 3/8, P (AD) = 1/2. These priors resulted in
a classification accuracy of 80 % on the CADDementia training set and in a
more balanced confusion matrix. The results of using these priors were submit-
ted to the challange as LDA-optimized-priors whereas the previous results were
submitted as LDA-equal-priors.

6 Discussion and Conclusion

In this paper, we proposed to combine a range of structural MRI biomarkers
for the purpose of multi-class classification of AD, MCI and NC. The individ-
ual biomarkers used in the combination were cortical thickness measurements,
hippocampal shape and texture, and volumetric measurements. Combining such
diverse biomarkers may potentially improve diagnostic performance from struc-
tural MRI. This is appealing because the modality is less invasive than state-of-
the-art biomarkers based on lumbar puncture and positron emission tomogra-
phy imaging that are directly measuring pathological hallmarks such as amyloid
load. However, despite this potential improvement and despite the inclusion of
biomarkers such as hippocampal texture that is sensitive to earlier stages of the
disease process, there were problems discriminating MCI from AD and NC (see
Table 4). Advancing performance further would probably need combination with
other non-structural MRI biomarkers such as the aforementioned.

Irrespective of this, a dementia diagnosis is in practice based on several
sources of information, such as neuropsychological assessment, physical exami-
nation, blood sampling, and visual inspection of some form of anatomical medi-
cal imaging (e.g., computed tomography or structural MRI), and structural MRI
biomarkers should be used in conjunction with all this information. The proposed
structural MRI combination biomarker is a promising direction for obtaining im-
proved diagnostic information from MRI to be used in clinical assessment.
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Abstract. Neurodegenerative diseases are frequently associated with
structural changes in the brain. Magnetic Resonance Imaging (MRI)
scans can show these variations and therefore be used as a supportive fea-
ture for a number of neurodegenerative diseases. The hippocampus has
been known to be a biomarker for Alzheimers disease and other neurolog-
ical and psychiatric diseases. However, it requires accurate, robust and
reproducible delineation of hippocampal structures. This work utilises a
datasets consisting of MR images shared by EADC-ADNI working group
. Hippocampus volume is a feature used in this analysis. For the other fea-
tures we used publicly available brain segmentation package FreeSurfer
v.5.1 (FS) (freesurfer.nmr.mgh.harvard.edu) [17] to process the struc-
tural brain MRI scans and compute morphological measurements. The
FreeSurfer pipeline is fully automatic and provides 184 features per MRI
scan in total. Volumes of cortical and sub-cortical structures such as
the caudate and average thickness measurements within cortical regions,
such as the precuneus. We use the FS features but for hippocampus
volume we use the segmentation proposed in [16]. For the diagnosis clas-
sification we passed all the features to a C-Support Vector Classifier
(C-SVC) with a linear kernel on a 5-fold cross validation. The goal is
evaluating the performance of an algorithms for multi-class classification:
AD, MCI and controls. Methods that are developed for binary classifica-
tion can be used for three-way classification by using either a one-vs-one
(ovo) or one-vs-all (ova) strategy. In this approach, three classifiers are
trained for the three binary problems using the ovo methodology and
thereafter their outputs are combined into three predictions.

�� Data used in preparation of this article were obtained from the Alzheimers Disease
Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investiga-
tors within the ADNI contributed to the design and implementation of ADNI and/or
provided data but did not participate in analysis or writing of this report. A com-
plete listing of ADNI investigators can be found at: http ://adni.loni.usc.edu/wp−
content/uploads/how to apply/ADNI Acknowledgement List.pdf
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1 Introduction

In the last few years the enormous development of neuroimaging has deeply al-
tered the research and clinical prospects in the field of neurodegenerative disor-
ders. This has been particularly relevant for Alzheimerss disease (AD), the most
common dementia in the world, affecting currently over 36 millions of people
(World Alzheimer Report 2011), a number destined to grow due to the increas-
ing aging population. AD is characterised by the formation and deposition of
abnormal proteins in the brain, with subsequent functional disruption, neuronal
suffering and cell death (neurodegeneration), the latter ultimately translated
into a loss of brain volume (atrophy). The cognitive decline is related to the
degree of brain atrophy, which accelerates with the progression of the disease, as
detected on MRI at a rate of 2% per year for the whole brain (versus 0.2− 0.5%
in normal aging), and at a rate of 5% per year for the hippocampus, a complex
structure located in the medial temporal lobe with a primary role in memory
and learning, thus making hippocampal atrophy the most important imaging
biomarker of the condition [2]. It is not surprising, then, that the accurate mea-
surement of hippocampal volume, is of crucial importance and has become the
focus of an increasingly large body of work. Until recently the segmentation of
the hippocampus, ie its identification and separation from surrounding brain
structures, had been performed mainly manually or with semi-automated tech-
niques, followed by manual editing. This is obviously time-consuming and sub-
ject to investigator variability, so a number of automated segmentation methods
have been developed. These have relied so far mainly on image intensity-based
methods, often adopting multi-atlas registration approaches, in order to min-
imize errors due to individual anatomical variation. More recently, though, a
number of methods that exploit shape information have been developed, based
on preliminary work carried out in the nineties with the Active Shape Models
(ASM) [1] and the Active Appearance Models (AAM) [3]). ASM address the is-
sue of identifying objects of a known shape in a digital image when the shape is
characterized by a certain degree of variability, as in the case of anatomical struc-
tures. AAM combine grey-level information with shape information provided by
a training set, but this may fail to capture the intrinsic variability of biological
structures, a limit attempted to overcome by the use of the wavelet transform
and the principal component analysis (PCA) [4]. Alternative methods have used
deformable representations or deformable M-reps [5]. Also, algorithms that asso-
ciate geometric information (obtained by expert priors or learning procedures in
a Bayesian framework) to powerful statistical tools, such as region competition
algorithms (Zhu and Yuille, 1996) have been combined with homotopic defor-
mations in automated hippocampal segmentation methods[6]. Recent work has
employed probabilistic tree frames for brain segmentation [7], at times adopting
specific models such as Markovian random fields or graphical cuts [8]. The use of
machine learning techniques enables the processing of high-dimensional feature
vectors without time-consuming computations thanks to optimization proce-
dures. Alternative approaches involve, for example, labeling strategies combined
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with other methods such as multiple segmentations [9], longitudinal 4-D methods
with graph cuts [10] and label fusion with template libraries [11].

2 Materials

This work utilises two datasets named DB − 1 and DB − 2. DB − 1 consists
of 98 MR images and their corresponding expert manual labels. The dataset is
shared by EADC-ADNI working group using a standard harmonized protocol
(www.hippocampal-protocol.net). The most inclusive definition of the Harmo-
nized protocol [12] may limit the inconsistencies due to the use of arbitrary lines
and tissue exclusion of the currently available manual segmentation protocols.
The second dataset used -DB− 2, is from ADNI screening images and cosists of
160 MR images. The two databases used are described with demographics given
in table 1.

Data Size Age M/F Subjects

DB-1 98 60-90 56/44 29 NC - 32 MCI - 37 AD
DB-2 160 28 - 96 76/84 68 NC -63 MCI - 29 AD

Table 1. Description of database used. Group size, range age (years) and sex of the
two clinical datasets, containing normal control (NC) subjects, Alzheimer’s Disease
(AD) and mild cognitive impairment (MCI) patients.

As data for the evaluation framework, CADDementia project composes a
multi-center data set consisting of 384 scans. The participating centers are: Eras-
mus MC (EMC), Rotterdam, the Netherlands; VU University Medical Center
(VUmc), Amsterdam, the Netherlands; University of Porto / Hospital de So Joo
(UP), Porto, Portugal This data set contains structural MRI (T1w) scans of
subjects with the diagnosis of probable Alzheimers disease (AD), mild cognitive
impairment (MCI) and participants without a dementia syndrome (controls). In
addition to the MR scans, demographic information (age, gender) and informa-
tion on which data are from the same institute is included. A large set is needed
for comparison of the different methods. In addition, a large set increases the
scientific value of our framework, as the data better represents a clinical popu-
lation.

Most of the data is used for evaluation of the methods: 354 MRIs for the test
set. Additionally, a small training dataset is provided, which consists of 30 scans
distributed over the diagnostic groups was added to our training set.

3 Methods

Statistical classification is an active area of pattern recognition and computer
vision research in which scalar- or vector-valued observations are automatically
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assigned to specific groups, often based on a training set of previously labeled ex-
amples. In medical imaging, different types of classification tasks are performed,
e.g., classifying image voxels as belonging to a certain anatomical structure, or
classifying an individual scanned into one of several diagnostic groups (disease
versus normal, semantic dementia versus Alzheimers disease, for example). We
use a fully automated method for voxel classification in a brain MRI scan as
belonging to the hippocampus versus not. In this method a procedure of train-
ing dataset selection based on active learning machine is used during learning of
voxel classification according to their Haar-like features, variables that describe
complex images based on a statistical analysis of adjacent groups of voxels. The
system consists of three processing levels: (a) linear registration of all brains
to a standard template and automated method to capture the global shape of
the hippocampus. (b) Feature extraction: all voxels included in the previously
selected volume were characterized by 315 features computed from local informa-
tion. (c) Voxel classification: a Random Forests algorithm was used to classify
voxels as belonging or not belonging to the hippocampus. The procedure has
been detailed in [13, 14, 15, 16].

Hippocampus volume is a feature used in this analysis. For the extraction
of the other features we used publicly available brain segmentation package
FreeSurfer v.5.1 (FS) (freesurfer.nmr.mgh.harvard.edu) [17], which aim is to
process the structural brain MRI scans and compute morphological measure-
ments. The FreeSurfer pipeline is fully automatic and provides 184 features per
MRI scan in total. Volumes of cortical and sub-cortical structures such as the
caudate and average thickness measurements within cortical regions, such as
the precuneus. We use the FS features but for hippocampus volume we use the
segmentation proposed in [16].

For the diagnosis classification we passed all the features to a C-Support Vec-
tor Classifier (C-SVC) with a linear kernel on a 5-fold cross validation. Specif-
ically, CTRL vs MCI, CTRL vs AD, and MCI vs AD classifications were com-
puted, after that the three probabilities were combined using the formula [20],

P (Ci|x) =

∏
j �=i

p(Ci|φij)∑
k

∏
j �=k

p(Ck|φkj)
(1)

where φij represents the output of the ovo classifiers. Since C-SVC does
return only predicted class labels, we used the Platt scaling [23] to generate
posteriors from the output of binary classifiers.

The five-per-pair binary classifiers were then used to predict the diagnosis
of the blind test set, by averaging the posteriors over all the cross validation
rounds. Final classification is obtained with a max-wins-all rule on the three
class posteriors.

3.1 Computational infrastructure

The method is developed in ITK and MATLAB framework for hippocampus
segmentation and we use FS to brain feature extraction. The computational
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resources required is about 13 hour per image. Therefore the availability of dis-
tributed computing software environments and adequate infrastructures was of
fundamental importance.

In this study, the LONI pipeline processing environment [21, 22] was used:
a user-friendly and efficient software for complex data analyses, available at
http://pipeline.loni.ucla.edu.

The present study was carried out using the local computer farm BC2S 3: a
distributed computing infrastructure consisting of about 5000 CPU and allowing
up to 1,8 PB storage. A further study for grid deployment was also performed,
with the aim of creating a pipeline tool suitable for large clinical trials. It was
carried out on the European Grid Infrastructure (EGI) which consists of about
300 geographically distributed sites around the world. In particular all the results
presented in this study were obtained on the BC2S using the 484 MR images
at our disposal. the run-time reduction with the grid implementation allowed to
produce results in a reasonable time with respect to the application execution as
a sequential process on limited resources. The advantages of the grid execution
are evident since we obtained the 90% of the analysis of 484 images after less
than 16 hours.

4 Results and Conclusion

We compute our estimates of the performance metrics (ACC, AUC) for 5-fold
cross validation extracting random the test set. Results showed that our method
performs very good in discriminating the three classes (CTRL, MCI, and AD),
in line with those of literature, with an overall accuracy of 0.8090 on the entire
dataset (DAll), whereas for the 30 subjects downloaded from MICCAI (D30), we
obtained an accuracy of 0.7333. In table 2 and table 3 we report the confusion
matrices for both the datasets.

Pred. CTRL Pred. MCI Pred. AD

CTRL 95 9 4

MCI 15 80 10

AD 5 12 58

Table 2. Confusion matrix for the classification of the entire dataset.

Moreover, in Fig.1, and Fig.2 are reported the ROC curves for the three
classes, for both the datasets. Also AUC scores are reported.

3 http://www.recas-pon.ba.infn.it
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Fig. 1. Roc curves on the entire dataset.
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Pred. CTRL Pred. MCI Pred. AD

CTRL 10 1 1

MCI 3 5 1

AD 0 2 7

Table 3. Confusion matrix for the classification of the dataset D30.
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Fig. 2. Roc curves on D30.
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The proposed fully automated approach may be suitable for large-scale re-
search studies, in the first instance on Alzheimers disease, where the hippocampal
volume and morphological changes are important biomarkers, potentially also on
other brain disorders in which atrophy and structural brain changes plays a rel-
evant pathogenetic role.
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Bari, Italy.

All authors disclose any actual or potential conflicts of interest, including
any financial, personal, or other relationships with other people or organizations
that could inappropriately influence their work. All experiments were performed
with the informed consent of each participant or caregiver in line with the Code
of Ethics of the World Medical Association (Declaration of Helsinki). Local in-
stitutional ethics committees approved the study.

References

[1] T. F. Cootes, C. J. Taylor, D. H. Cooper, and J. Graham. Active Shape Models-
Their Training and Application. Computer Vision and Image Understunding Vol.
61, No. 1, January, pp. 38-59 (1995)

[2] C. R. Jack, M. M. Shiung, J. L. Gunter, P. C. Obrien, S. D. Weigand, D. S.
Knopman, B. F. Boeve, R. J. Ivnik, G. E. Smith, R. H. Cha, et al., Comparison
of different mri brain atrophy rate measures with clinical disease progression in
ad, Neurology 62 (4) (2004) 591600.

[3] T. F. Cootes, G. J. Edwards, C. J. Taylor, Active appearance models, IEEE
Transactions on Pattern Analysis and Machine Intelligence 23 (6), 681685, (2001).

[4] C. Davatzikos, S. M. Resnick, X. Wu, P. Parmpi, C. M. Clark, Individual patient
diagnosis of AD and FTD via high-dimensional pattern classification of MRI,
NeuroImage 41 (4) 12201227, (2008).

[5] S. M. Pizer, P. T. Fletcher, S. Joshi, A. Thall, J. Z. Chen, Y. Fridman, D. S.
Fritsch, A. G. Gash, J. M. Glotzer, M. R. Jiroutek, C. Lu, K. E. Muller, G.
Tracton, P. Yushkevich, E. L. Chaney, Deformable M-Reps for 3D Medical Image
Segmentation, International Journal of Computer Vision 55 (2) 85106, (2003).

[6] M. Chupin, E. Grardin, R. Cuingnet, C. Boutet, L. Lemieux, S. Lehricy, H. Benali,
L. Garnero, O. Colliot, The Alzheimers Disease Neuroimaging Initiative, Fully
automatic hippocampus segmentation and classification in Alzheimers disease and
mild cognitive impairment applied on data from ADNI, Hippocampus 19 (6),
579587 (2009) .

[7] Z. Tu, K. L. Narr, P. Dollar, I. Dinov, P. M. Thompson, A. W. Toga, Brain
anatomical structure segmentation by Hyhrid discriminative /generative models,
IEEE Trans. Med. Imaging 27 (4), 495508, (2008).

[8] Y. Zhang, M. Brady, S. Smith, Segmentation of brain MR images through a hidden
Markov random field model and the expectationmaximization algorithm, IEEE
Trans. Med. Imaging 20 (1), 4557, (2001).

[9] R. A. Heckemann, J. V. Hajnal, P. Aljabar, D. Rueckert, A. Hammers, Automatic
anatomical brain MRI segmentation combining label propagation and decision
fusion, NeuroImage 33 (1) (2006) 115126.

[10] R. Wolz, P. Aljabar, J. V. Hajnal, A. Hammers, D. Rueckert, The Alzheimers Dis-
ease Neuroimaging Initiative, LEAP: learning embeddings for atlas propagation,
NeuroImage 49 (2) (2010) 13161325.

[11] D. L. Collins, J. C. Pruessner, Towards accurate, automatic segmentation of the
hippocampus and amygdala from MRI by augmenting ANIMAL with a template
library and label fusion, NeuroImage 52 (4) (2010) 13551366.

MICCAI 2014 - Challenge on Computer-Aided Diagnosis of Dementia Based on Structural MRI Data

127



[12] M. Boccardi, M. Bocchetta, L. Apostolova, J. Barnes, G. Bartzokis, G. Corbetta,
C. DeCarli, L. DeToledo-Morrell, M. Firbank, R. Ganzola, L. Gerritsen, W. Hen-
neman, R. Killiany, N. Malykhin, P. Pasqualetti, J. Pruessner, A. Redolfi, N.
Robitaille, H. Soininen, D. Tolomeo, L. Wang, H. Watson, S. Duchesne, C. Jack,
G. B. Frisoni, DelphiDelphi Consensus on Landmarks for the Manual Segmen-
tation of the Hippocampus on MRI: Preliminary Results from the EADC-ADNI
Harmonized Protocol Working Group, Neurology 78 Suppl. 1, 171174, (2012).

[13] Amoroso, N., et al.: Automated shape analysis landmarks detection for medical
image processing. Computational Modelling of Objects Represented in Images III:
Fundamentals, Methods and Applications, 139 (2012).

[14] Tangaro, S., et al.: Active Learning Machines for Automatic Segmentation of
Hippocampus in MRI. ICDM2013 proceedings, (2013).

[15] Maglietta, R., et al.: Random Forest Classification for Hippocampal Segmentation
in 3D MR Images. In Machine Learning and Applications (ICMLA), 2013 12th
International Conference on IEEE 1, 264–267 (2013, December).

[16] Tangaro, S., et al.: Automated voxel-by-voxel tissue classification for hippocampal
segmentation: Methods and Validation. Physica Medica, in press.

[17] Fischl, B.: FreeSurfer. Neuroimage 62, 774-781 (2012).
[18] Dale, A.M., Fischl, B., Sereno, M.I.: Cortical surface-based analysis: I. Segmen-

tation and surface reconstruction. Neuroimage 9, 179-194 (1999).
[19] Fischl, B., Sereno, M.I., Dale, A.M.,: Cortical surface-based analysis: II: Inflation,

flattening, and a surface-based coordinate system. Neuroimage 9, 195-207 (1999).
[20] Hamamura, T.; Mizutani, H.; Irie, B., ”A multiclass classification method based

on multiple pairwise classifiers,” Document Analysis and Recognition, 2003. Pro-
ceedings. Seventh International Conference on , vol., no., pp.809,813, 3-6 Aug.
2003 doi: 10.1109/ICDAR.2003.1227774

[21] I. D. Dinov, K. Lozev, P. Petrosyan, Z. Liu, P. Eggert, J. Pierce, A. Zamanyan, S.
Chakrapani, J. D. Van Horn, D. S. Parker, R. Magsipoc, K. Leung, B. Gutman,
R. P. Woods, A. W. Toga, Neuroimaging Study Designs, Computational Analyses
and Data Provenance Using the LONI Pipeline, PLoS ONE 5 (9).

[22] D. E. Rex, J. Q. Ma, A. W. Toga, The LONI Pipeline Processing Environment,
NeuroImage 19 (3) (2003) 10331048.

[23] John C. Platt, ”Probabilistic Outputs for Support Vector Machines and Compar-
isons to Regularized Likelihood Methods”, ADVANCES IN LARGE MARGIN
CLASSIFIERS, 1999, 61–74, MIT Press

MICCAI 2014 - Challenge on Computer-Aided Diagnosis of Dementia Based on Structural MRI Data

128



BrainPrint in the Computer-Aided Diagnosis of
Alzheimer’s Disease

C. Wachinger1,2, K. Batmanghelich1, P. Golland1, M. Reuter1,2

1Computer Science and Artificial Intelligence Lab, MIT
2Massachusetts General Hospital, Harvard Medical School

Abstract. We investigate the potential of shape information in assisting
the computer-aided diagnosis of Alzheimer’s disease and its prodromal
stage of mild cognitive impairment. We employ BrainPrint to obtain an
extensive characterization of the shape of brain structures. BrainPrint
captures shape information of an ensemble of cortical and subcortical
structures by solving the 2D and 3D Laplace-Beltrami operator on tri-
angular and tetrahedral meshes. From the shape descriptor, we derive
features for the classification by computing lateral shape differences and
the projection on the principal component. Volume and thickness mea-
surements from FreeSurfer complement the shape features in our model.
We use the generalized linear model with a multinomial link function for
the classification. Next to manual model selection, we employ the elastic-
net regularizer and stepwise model selection with the Akaike information
criterion. Training is performed on data provided by the Alzheimer’s Dis-
ease Neuroimaging Initiative (ADNI) and testing on the data provided
by the challenge. The approach runs fully automatically.

1 Introduction

This paper describes our method submitted to the challenge on Computer-Aided
Diagnosis of Dementia based on structural MRI data held in conjunction with
MICCAI 2014 in Boston. The task of the challenge is to differentiate between
patients with Alzheimer’s disease (AD), mild cognitive impairment (MCI), and
healthy controls (CN) given T1-weighted MRI data. Alzheimer’s disease leads to
structural changes in the brain that are visible in T1 images. The challenge pro-
vides multi-center data from hospitals in the Netherlands, including 30 subjects
for validation and 354 subjects for testing. The objective of the study is to pro-
vide a large-scale objective validation of methods for computer-aided diagnosis
of dementia and therefore promoting their application in clinical practice.

We propose to augment the commonly used volume and thickness measure-
ments for AD classification with shape information. Shape information can con-
tribute valuable information to the characterization of brain structures, which
is only coarsely represented by its volume. For quantifying shape, we use the
recently introduced BrainPrint [22], which is a holistic representation of the
brain anatomy, containing the shape information of an ensemble of cortical and
subcortical structures. Previous studies that employed shape information for the
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classification focused on single structures, e.g . the hippocampus [8, 6, 3, 21], while
BrainPrint provides an extensive characterization of the brain anatomy. Such
a holistic characterization seems promising in diagnosing Alzheimer’s disease,
which is associated with global atrophy across the brain. BrainPrint naturally
extends the ROI-based analysis in FreeSurfer that provides volume and thickness
measurements with shape information.

BrainPrint quantifies the shape information by calculating the spectrum of
the Laplace-Beltrami operator on both triangular meshes that represent bound-
ary surfaces, e.g . the white matter surface, and tetrahedral meshes for volumetric
representations. The meshes are constructed from the segmentation provided by
FreeSurfer. From the detailed, high-dimensional characterization with Brain-
Print, we compute lateral shape differences and the projection on the principal
component to obtain shape features that can easily be integrated in the classi-
fication. These shape features complement volume and thickness measurements
in our analysis, which are appropriately normalized to account for head size
and gender. The classification is performed with the generalized linear model
and a multinomial link function. Next to manual model selection, we employ
the elastic-net regularizer and stepwise model selection with the Akaike infor-
mation criterion. Training is performed on data provided by the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) and testing on the data provided by
the challenge.

1.1 Related Work

A recent review of machine learning approaches in Alzheimer’s disease [5], refers
to only two articles that employ shape features [6, 3], illustrating that shape is
not commonly used. A recent comparison of methods for AD classification [4] in-
cluded one shape-based approach [8]. The focus of these shape-based approaches
is the hippocampus. More precisely, [8] approximate the hippocampal shape by
a series of spherical harmonics. [6] use permutation tests to extract surface lo-
cations that are significantly different among patients with AD and controls.
[3] incorporate shape information by deriving thickness measurements of the
hippocampus from a medical representation. [21] use statistical shape models
to detect hippocampal shape changes. Other structures of interest for shape
analysis were the cortex and ventricles. [11] use multi-resolution shape features
with non-Euclidean wavelets for the analysis of cortical thickness. [12] analyze
the fractal dimension of the cortical ribbon. [10] model surface changes of the
ventricles in a longitudinal setup with a medial representation.

The shape characterization in BrainPrint [22] builds upon shapeDNA [20],
which contains the spectral information of objects. Spectral signatures have pre-
viously been investigated for AD classification [1], with a focus on right hip-
pocampus, right thalamus and right putamen. In contrast, we characterize cor-
tical structures and the wide range of subcortical structures. Moreover, a 3D
object can be represented by its volume (e.g . tetrahedra mesh) or its boundary
(e.g . triangle meshes), where the spectra of 3D solid objects and their 2D bound-
ary surfaces contain complementary information [20]. Most prior work computes
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the shapeDNA for triangular surface meshes [1, 2, 16], while we also work with
spectra of tetrahedral volume tessellations [19]. Given that the Laplace spectra
are isometry invariant, the 2D boundary representation alone may yield a weaker
descriptor, due to the large set of potential (near-) isometric deformations. E.g. a
closed 2D surface with a protrusion pointing inwards yields the same descriptor
as one with the protrusion pointing outwards, while the spectra of the enclosed
3D solids differ. Furthermore, it has been shown in [17] that spectra of the 2D
boundary surface are capable of distinguishing two isospectral 3D solids (GWW-
prisms). For these resons we combine the information from both the 3D solid
and 2D boundary shape representations in the BrainPrint.

2 Shape Features for Classification

2.1 Shape Descriptor BrainPrint

The shape description is based on the automated segmentation of anatomical
brain structures with FreeSurfer [7]. In this work we use the shapeDNA [20] as
shape descriptor, which performed among the best in a comparison of methods
for non-rigid 3D shape retrieval [14]. The ShapeDNA is computed from the
intrinsic geometry of an object by calculating the Laplace-Beltrami spectrum.
It provides a compact shape representation that facilitates the further analysis.
Considering the Laplace-Beltrami operatorΔ, we obtain the spectrum by solving
the Laplacian eigenvalue problem (Helmholtz equation)

Δf = −λf (1)

using the finite element method. The solution consists of eigenvalue λi ∈ R and
eigenfunction fi pairs (sorted via their eigenvalues: 0 ≤ λ1 ≤ λ2 ≤ . . .). The first
l non-zero eigenvalues form the shapeDNA: λ = (λ1, . . . , λl). Next to this direct
definition of shapeDNA, we also consider the normalization of the eigenvalues
to make the representation independent of the objects’ scale

λ′ = vol
2
D λ, (2)

where vol is the Riemannian volume of the D-dimensional manifold (i.e. the area
for 2D surfaces) [20].

The eigenvalues are isometry invariant with respect to the Riemannian mani-
fold, meaning that length-preserving deformations will not change the spectrum.
Isometry invariance includes rigid body motion and therefore permits the com-
parison of subjects by directly comparing the shapeDNA, without the need for
alignment. A second property is that the spectrum continuously changes with
topology-preserving deformations of the boundary of the object. Fig. 1 illustrates
the eigenfunctions calculated on the surface of the cerebral cortex. The eigen-
functions show natural vibrations of the shape when oscillating at a frequency
specified by the square root of the eigenvalue.

We compute the spectra for all cortical and subcortical structures on the
2D boundary surfaces (triangle meshes) and additionally for cortical structures
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Fig. 1: Left cerebral cortex and first eigenfunctions of the Laplace-Beltrami op-
erator calculated on the surface (yellow positive, red negative, and green zero).

(white and pial surfaces in both hemispheres) also on the full 3D solid (tetrahedra
meshes), forming the BrainPrint Λ = (λ1, . . . ,λη). Triangle meshes of the corti-
cal surfaces were obtained automatically for each hemisphere using FreeSurfer.
Surface meshes of subcortical structures were constructed via marching cubes
from the FreeSurfer subcortical segmentation. To construct tetrahedral meshes,
first handles were removed from the surface meshes, which were then uniformly
resampled to 60K vertices. The gmsh package [9] was used to compute the tetra-
hedra volume meshes. For the computation of the spectra we used the linear finite
element method [20] with Neumann boundary condition (zero normal derivative)
for tetrahedra meshes.

2.2 Shape Features from BrainPrint

BrainPrint contains shape information from η = 44 brain structures, each one
described by l = 50 eigenvalues. This results in a characterization of a sub-
ject’s brain shape by over 2000 variables, which can easily cause overfitting
of the model. To decrease the number of variables and increase robustness, we
therefore (i) include a 1D asymmetry measure (the distance of BrainPrint across
hemispheres), and (ii) employ principal component analysis. When working with
BrainPrint, the potential switching of eigenfunctions across shape deformations
as discussed in [18] are not problematic as we compare the sorted sequences
of eigenvalues (shapeDNA). In order for eigenfunctions to switch, their eigen-
values have to be very close initially, so a switch has only a limited effect on
the BrainPrint. Another aspect of shapeDNA is that the eigenvalues form an
increasing sequence with the variance increasing as well. Depending on the dis-
tance measure, this can cause higher eigenvalues to dominate the similarity mea-
sure between two shapes, although these components do not necessarily contain
the most important geometric information. Additionally, the increased impact
of higher eigenvalues puts a particular emphasis on number of selected eigen-
values l. To account for these issues we normalize the BrainPrint and employ
appropriate distance computations as described next.

Lateral differences: As a first shape feature, we compute lateral (left/right)
shape differences of brain structures. More precisely, we compute differences for
white and gray matter surfaces with triangular and tetrahedral meshes, as well
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as triangular meshes for cerebellum white matter and gray matter, striatum,
lateral ventricles, hippocampus and amygdala. We calculate the Mahalanobis
distance between a brain structure s

ds = ‖λleft
s − λright

s ‖Σs
, (3)

with Σs the covariance matrix across all subjects for structure s.
Alternative distance functions that have been proposed for shapeDNA are

the Euclidean distance (or any p-norm), some Hausdorff distances, the Euclidean

distance on re-weighted eigenvalues λ̂i = λi/i [20, 17], and the weighted spectral
distance [13]. The weighted distances (latter two approaches) are motivated by
the need to reduce the impact of higher eigenvalues on the distance. The linear
re-weighting is based upon the observation that the eigenvalues demonstrate a
linear growth pattern (Weyl’s law) and therefore yields an approximately equal
contribution of each eigenvalue. The weighted spectral distance is similar to a
division by the squared eigenvalue number and therefore functions like a low-pass
filter. The proposed Mahalanobis distance accounts for the covariance pattern in
the data and supports an equal contribution of all eigenvalues in the sequence.

Principal Component Analysis: A second set of features that we derive
from BrainPrint is the calculation of the principal component analysis for each
of the 44 brain structures. Projecting the shapeDNA on the principal component
retains most of the variance in the dataset, while reducing the dimensionality.
Problematic in this regard is once again that higher eigenvalues show most vari-
ance, so that they will dominate the identification of the principal component.
We have experimented with (i) linear re-weighting, λ̂i = λi/i, and (ii) the nor-
malization of each eigenvalue to unit variance across the dataset. Evaluation of
both approaches yielded similar results, so that we employ the simpler linear
re-weighting.

3 Alzheimer Classification with BrainPrint

We use the generalized linear model (GLM) for the classification with a multi-
nomial link function. We employ linear models in this study because we expect
non-linear methods in combination with the large number of features to be more
susceptible to overfitting.

3.1 Features

Each subject is characterized by 163 features. These split up in 70 thickness and
39 volume measurements provided by FreeSurfer, together with 10 lateral shape
differences, and 44 PCA shape variations. According to the recent analysis of
the normalization of variables for AD classfication [23], we normalize volumet-
ric measures by ICV but do not normalize cortical thickness measures. Linear
regression with respect to age is performed for each feature to remove the con-
founding effect of age in the analysis. After the normalization, we exclude age
and gender from the variables.
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Fig. 2: Multinomial deviance
of elastic-net computed with
cross-validation for different pa-
rameters λ (bottom) and the
corresponding number of fea-
tures (top). The plot shows the
mean deviance together with
upper and lower standard devi-
ation.

3.2 Model Selection

We use three different approaches for model selection: manual, stepwise selec-
tion, and elastic-net. For the manual model, we choose volume and thickness
measurements that have previously been reported important for AD classifica-
tion and add shape features. For volume, we use hippocampus and amygdala.
For thickness, we use entorhinal cortex, middle temporal lobe, parahippocampal
gyrus, and banks of the superior temporal sulcus. For shape, we use the lateral
differences of hippocampus, amygdala, and lateral ventricles. Experiments show
a clear improvement in classification accuracy with the additional shape features.

As second approach, we employ stepwise model selection in the GLM with
the Akaike information criterion (AIC). The AIC considers model complexity in
terms of the number of variables and the likelihood of the data given the data.
The model with the best trade-off between high likelihood and few variables
is selected by the AIC. We performed the model selection once on the ADNI
training data, yielding a model with 25 thickness, 15 volume, and 13 shape
features, referred to as “stepwise I”. In a second run, we added the challenge
training data to the model selection, leading to a model with 30 thickness, 11
volume, and 19 shape features, referred to as “stepwise II”.

In the final approach for model selection, we use elastic-net regularized gen-
eral linear models provided by the R package glmnet. The regularizer in elastic-
net combines lasso and ridge-regression penalties, modulated by the parameter α

Pα(β) = (1− α)
1

2
‖β‖22 + α‖β‖1, (4)

with coefficients β. Our experiments indicated best results for the lasso penalty
(α = 1). An additional parameter λ, balancing the data fit and penalty term, was
determined with cross-validation, see Fig. 2. The lowest multinomial deviance of
the model corresponds roughly to λ = exp(−4.5).
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Subjects Diagnosis Gender Age quantiles
(CN/MCI/AD) Male Female (1st/2nd/3rd)

ADNI 751 (213/364/174) 437(58%) 314(42%) (71.1/75.3/79.8)
Challenge-Validation 30 (12/9/9) 17(57%) 13(43%) (59.3/65.0/68.0)
Challenge-Test 354 213(60%) 141(40%) (59.0/64.0/71.0)

Table 1: Statistics of datasets used for training and testing.

4 Results

We processed the non-uniformity corrected brain scans distributed by the chal-
lenge with FreeSurfer v5.3. We processed the baseline scans from ADNI-1 [15]
with FreeSurfer v5.1. Table 1 lists statistics about diagnosis and demographics
of both datasets. Notable is the age difference between the challenge and ADNI
data. The first quantile of ADNI is higher than the third quantile of the challenge
data meaning that 75% of ADNI cases are older than 75% of challenge cases.
This mismatch may have a detrimental effect on the classification. All results
reported in this paper are obtained by training on the ADNI data and predicting
on the challenge-validation data. The results on the challenge-test data will be
announced by organizers later. For the final training with the submission of the
results to the challenge, we also include the validation data to the training set
because of the potential benefit of including samples from the target dataset to
training.

The processing of the challenge data with FreeSurfer failed for 3 subjects.
These subjects are labeled as AD without further inspection, since we assume a
relation between processing difficulties and severe atrophy or increased subject
motion in AD patients. The BrainPrint calculation caused errors on triangular
meshes for 1 subject and on tetrahedral meshes on 5 subjects. The errors are re-
lated to FreeSurfer producing a mesh that is a non-manifold (the mesh has edges
sharing more than two triangles) and problems in the volumetric mesh creation
with gmsh. We impute missing values for these 6 subjects by the population
mean in the statistical analysis. The mean runtime of FreeSurfer was 16.8h on
the challenge data. The calculation time for BrainPrint is about 0.6h per sub-
ject, where most time is spent on mesh processing. The statistical analysis runs
in less than a minute. All processing steps run fully automatically.

Our approach depends on a number of design choices and variables. One is
the distance function for the calculation of lateral shape differences. The results
across the model selection schemes for different distance functions are not unan-
imous but the Mahalanobis distance achieved competitive results. We choose
a linear re-weighting of the eigenvalues in PCA. Another important parame-
ter is the number of eigenvalues l forming the shapeDNA. Fig. 3 illustrates the
classification accuracy on the challenge-validation data as a function of the num-
ber of eigenvalues. We compare the manual model selection, the two stepwise
approaches, and the elastic-net approach. The plot also shows the impact of
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Fig. 3: Classification accuracy on challenge-validation data. The plots contrast
the impact of the volume normalization in Eq.(2). Results are shown for different
model selection schemes and are plotted as function of the number eigenvalues l.

the volume normalization of shapeDNA with Eq.(2) on the classification perfor-
mance.

Based on the results, we select l = 40 eigenvalues for the further analysis.
Table 2 shows additional evaluation measures for this case. The scripts to cal-
culate these measures were provided by the challenge organizers. For the final
prediction on the challenge-test data, we also added the challenge-validation
data to the training set. We measure the consistency of the predicted classes on
the challenge-test data for the changed training set and list it in the table. We
observe a tendency for less consistent results with more sophisticated methods.
Since the number of results submitted per group was limited to 5, we select
the methods with best performances, highlighted in bold face in table 2. We
also included the manual model, although it performs slightly worse than the
elastic-net.

5 Conclusion

We investigated the potential of BrainPrint for classifying between AD, MCI,
and CN in the MICCAI dementia challenge. We derived shape features from
BrainPrint and used them together with volume and thickness measures in gen-
eralized linear models for classification. Three different approaches for model
selection were presented. We trained our methods on the ADNI dataset. Our re-
sults indicate the good performance in classification when adding the ensemble
of shape information from BrainPrint.
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Model Norm Accuracy TPF-CN TPF-MCI TPF-AD AUC CON

Manual

No

67 (43-80) 83 (50-100) 67 (20-89) 44 (10-80) 78 (63-90) 97
Stepwise I 77 (53-87) 83 (50-100) 67 (20-89) 78 (33-100) 88 (73-96) 95
Stepwise II 80 (60-90) 92 (55-100) 56 (20-86) 89 (50-100) 84 (69-95) 91
Elastic-net 73 (53-83) 83 (50-100) 56 (20-86) 78 (33-100) 84 (69-93) 92

Manual

Yes

63 (40-77) 75 (42-93) 67 (20-89) 44 (10-80) 79 (63-91) 97
Stepwise I 77 (53-87) 83 (50-100) 78 (33-100) 67 (17-89) 89 (76-96) 98
Stepwise II 63 (40-77) 92 (55-100) 33 (0-70) 56 (11-83) 77 (65-88) 91
Elastic-net 73 (53-83) 83 (50-100) 44 (13-78) 89 (50-100) 86 (73-95) 93

Table 2: Evaluation of classification results for different models calculated on the
challenge-validation data. Confidence intervals are shown in parenthesis. All val-
ues are in %. (Norm = volume normalization, TPF = true positive fraction, AUC
= area under the curve, CON = consistency of prediction). Methods submitted
to the challenge are highlighted with bold face.

and the NeuroImaging Analysis Center (P41-EB015902). We thank the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) for image data.
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