Alzheimer's disease state classification using structural volumetry, cortical thickness and intensity features

<u>Christian Ledig</u>, Ricardo Guerrero, Tong Tong, Katherine Gray, Alexander Schmidt-Richberg, Antonious Makropoulos, Rolf A. Heckemann, Daniel Rueckert

Results (ADNI, CAAD training)

Overview

Training Data (n=734)

Table 1: Subject groups mean age, sample size, MMSE scores, gender, CDR scores and Magnetic strength from ADNI1-2.

	Ν	Age	MMSE	Men (#)	CDR	1.5T (3T)
AD	170	74.77±7.62	23.12±2.06	46% (78)	0.79±0.27	90 (80)
MCI	288	73.79±7.47	27.28 ± 1.79	55% (158)	$0.50 {\pm} 0.00$	185 (103)
CN	276	$74.75{\pm}5.82$	29.07 ± 1.16	47% (131)	$0.00 {\pm} 0.00$	156 (120)

Data Preprocessing

- Scans with in-plane resolution <0.5mm were resampled → double resolution
- N4 bias field correction (Tustison et al., TMI, 2010)
- Brain extraction using pyramidal intracranial masking (pincram) (cf. Heckemann et al., "DISPATCH", MICCAI 2012 Grand Challenge on Multi-atlas Labeling, 2012)

Overview

Overview

8

Whole-brain segmentation (MALP-EM)

(30 atlases provided by neuromorphometrics.com)

Ledig, C. et al., Multi-class brain segmentation using atlas propagation and EM-based refinement, ISBI 2012

Ledig, C. et al., Segmentation of MRI brain scans using MALP-EM, MICCAI Grand Challenge and Workshop on Multi-atlas labeling, 2012

Whole-brain segmentation (MALP-EM)

Ledig, C. et al., Multi-class brain segmentation using atlas propagation and EM-based refinement, ISBI 2012 Ledig, C. et al., Segmentation of MRI brain scans using MALP-EM, MICCAI Grand Challenge and Workshop on Multi-atlas labeling, 2012

Whole-brain segmentation (MALP-EM)

structural volumes (VOL), cortical thickness*/ cortical surface** (CORT)*

test_emc_051

*S. E. Jones, et al., "Three-dimensional mapping of cortical thickness using laplace's equation," Human Brain Mapping, 2000. **C. E. Rodriguez-Carranza, et al., "A framework for in vivo quantification of regional brain folding in premature neonates," NeuroImage, 2008.

(based on Guerrero et al. NeuroImage 2014)

Learn ROI in template space using elastic net regression

(based on Guerrero et al. NeuroImage 2014)

Learn ROI in template space using elastic net regression

- Extract local binary patterns (LBP) from ROI of unseen images
- Reduce dimensionality (PCA)

Patch-based grading features (GRAD)

(based on Tong et al. Medical Image Analysis 2014)

Extraction of Important Patches

- Generating probability map using Elastic Net (Guerrero et al., 2014)
- Extracting patches at locations where pathological changes of AD might exist (i.e. high probability in the map). (Tong et al., 2014)

Probability maps for extracting important patches

Grading Features Extraction

Compute Grading Features:

18

Random forest classifiers

20

- **Ensemble** of decision trees with rules for:
 - Training 100 trees
 - objects sampled at random with replacement to form tree-specific training set
 - At each tree node, randomly select variables to optimise binary split
 - Combining trees
 - Test data classified by simple majority voting across all trees in forest
 - Scikit-learn implementation (http://scikit-learn.org/)

Breiman, L., "Random Forests", Machine Learning, 45(1), pp. 5-32

Performance on ADNI cohorts

Table 2: Overview of the classification results for the 10-fold cross validation on the subset of the ADNI1-2 cohort. Mean classification accuracy (\pm SD) based on 10-fold cross validation.

Туре	# Feat.	AD vs. CN	AD vs. MCI	MCI vs. HC	AD vs. MCI vs. HC
VOL	135	0.83±0.05	0.68 ± 0.04	0.67±0.05	0.54 ± 0.04
CORT	591	0.80 ± 0.05	0.65 ± 0.06	0.63 ± 0.04	0.51 ± 0.05
MBL	20	0.89 ± 0.05	0.67±0.07	0.70 ± 0.05	0.58±0.03
GRAD	150	0.86 ± 0.04	0.67 ± 0.04	0.69 ± 0.04	0.56 ± 0.04
ALL	896	$0.87 {\pm} 0.03$	$0.68 {\pm} 0.04$	0.72 ± 0.05	0.59 ± 0.04

Performance on ADNI cohorts

Table 2: Overview of the classification results for the 10-fold cross validation on the subset of the ADNI1-2 cohort. Mean classification accuracy (\pm SD) based on 10-fold cross validation.

Туре	# Feat.	AD vs. CN	AD vs. MCI	MCI vs. HC	AD vs. MCI vs. HC
VOL	135	0.83±0.05	0.68 ± 0.04	0.67±0.05	0.54 ± 0.04
CORT	591	0.80 ± 0.05	0.65 ± 0.06	0.63 ± 0.04	0.51 ± 0.05
MBL	20	$0.89 {\pm} 0.05$	0.67±0.07	0.70 ± 0.05	0.58±0.03
GRAD	150	0.86 ± 0.04	0.67 ± 0.04	0.69 ± 0.04	0.56 ± 0.04
ALL	896	0.87±0.03	$0.68 {\pm} 0.04$	Q 0.72±0.05	0.59±0.04

best individual method

best overall

Performance on CADD training set

Table 3: Overview of the classification results obtained on CADDementia training data. Mean classification accuracy (\pm SD) based on 10 classification runs.

Туре	# Feat.	AD vs. CN	AD vs. MCI	MCI vs. HC	AD vs. MCI vs. HC
VOL	135	$0.86 {\pm} 0.03$	0.73 ± 0.05	$0.68 {\pm} 0.05$	$0.56 {\pm} 0.08$
CORT	591	$0.91 {\pm} 0.05$	0.67 ± 0.09	$0.65 {\pm} 0.05$	$0.58 {\pm} 0.07$
MBL	20	0.94 ± 0.02	$> 0.62 \pm 0.04$	0.75 ± 0.04	0.66 ± 0.01
GRAD	150	0.88±0.03	0.75±0.06	0.76±0.03	0.67±0.05
ALL	896	0.92±0.02 <	0.78 ± 0.05	0.75 ± 0.04	0.68±0.05

best individual method

best overall

Computation Times

Task	Runtime	Implementation	Automatic
N4 bias correction	< 30 minutes	single core	yes
pincram brain extraction	< 1 hour	parallel	yes*
registration of the 30 atlases (VOL)	< 2 hours	parallel	yes
atlas fusion (VOL)	< 20 minutes	single core	yes
cortical thickness (CORT)	< 15 minutes	single core	yes
local binary patterns (MBL)	< 1 second	single core	yes
dimensionality reduction, ~1800 subjects (MBL) < 10 seconds	parallel	yes
Grading feature extraction (GRAD)	< 5 minutes	single core	yes
classification	< 1 second	single core	yes

Table 4: Overview of the approximate computation times per subject.

*(manual quality control)

Conclusion

- All our methods are fully automatic
 - exception: The visual quality check of brain masks
- The more involved manifold learning and patch-based methods outperform the rather simple structural analysis
- Little complementary information between feature sets
- Substantially higher classification accuracies on challenge data than on ADNI
 - but: small sample size (N=30)
 - suggests higher quality data and/or clearer group separation of patient groups

