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Abstract. We propose a method for dementia classification based brain
magnetic resonance images (MRIs). The method learns to recognize
patients with Alzheimer’s disease or Mild Cognitive Impairment from
healthy controls. The features used are extracted with sparse logistic re-
gression from a large pool of voxel-wise gray matter densities computed
based on MRIs registered to stereotactic space. The classifier uses a Low
Density Separation algorithm, which can take advantage of both labeled
and unlabeled samples. The differences between the training and test sets
are compensated based on an algorithm for unsupervised domain adapta-
tion. The method is fully automatic. The proposed method participated
in the 2014 CADDementia competition, with an estimated accuracy of
0.767 for the public test data. The training data was extracted from
ADNTI database.
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1 Introduction

Alzheimers disease (AD) is the most common form of dementia. More than
30 million people worldwide suffer from AD and, due to the increasing life ex-
pectancy, this number is expected to triple by 2050 [1]. Therefore, it is extremely
important to identify subjects in a risk of getting the disease.

In this paper, we propose an approach to automatically categorize subjects
into three classes: Subjects with Alzheimer’s disease (AD), subjects with mild

** Data used in preparation of this article were obtained from the Alzheimers Disease
Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the inves-
tigators within the ADNI contributed to the design and implementation of ADNI
and/or provided data but did not participate in analysis or writing of this report.
A complete listing of ADNI investigators can be found at http://adni.loni.usc.
edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
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cognitive impairment (MCI) and cognitively normal subjects (NC). Our method
relies on voxel-based morphometry (VBM) style preprocessing [2]. The MRI
features used for the classification are selected from a larger pool of features using
sparse logistic regression [3,4]. Then, relying on these features, we construct
a hierarchical classification framework utilizing binary classifiers as component
classifiers. Each binary classifier is trained in a semi-supervised manner, meaning
that they can utilize unlabeled data in addition to labeled data. The labeled
data is obtained from the ADNI database and CADDementia data is used as
unlabeled data. The semi-supervised learning is performed by the Low Density
Separation (LDS) algorithm [5], and we have demonstrated its efficiency for
classifying subjects with stable and progressive MCI [6, 7]. Here, we extend the
methods [4, 7] to the three-category classification problem (AD vs. MCI vs. NC).
Moreover, because our training and test sets have different characteristics we
utilize an unsupervised domain adaptation method to normalize the samples [§].
The method is fully automatic.

The rest of this paper is organized as follows. Section 2 describes the image
data used for the training and validating the classifier. Also the image prepro-
cessing and the used features are described in Section 2. Section 3 introduces
the classification scheme. Section 4 presents experimental validation results with
CADDementia data and Section 5 concludes the paper.

2 Material

2.1 Training data: ADNI

Data used in this work to train the classifier is obtained from the Alzheimers Dis-
ease Neuroimaging Initiative (ADNI) database http://adni.loni.usc.edu/.
The ADNI was launched in 2003 by the National Institute on Aging (NIA), the
National Institute of Biomedical Imaging and Bioengineering (NIBIB), the Food
and Drug Administration (FDA), private pharmaceutical companies and non-
profit organizations, as a 60 million US dollar, 5-year public-private partnership.
The primary goal of ADNI has been to test whether serial MRI, PET, other bio-
logical markers, and clinical and neuropsychological assessment can be combined
to measure the progression of MCI and early AD. Determination of sensitive and
specific markers of very early AD progression is intended to aid researchers and
clinicians to develop new treatments and monitor their effectiveness, as well as
lessen the time and cost of clinical trials.

The Principal Investigator of this initiative is Michael W. Weiner, MD, VA
Medical Center and University of California San Francisco. ADNI is the result of
efforts of many co-investigators from a broad range of academic institutions and
private corporations, and subjects have been recruited from over 50 sites across
the U.S. and Canada. The initial goal of ADNI was to recruit 800 subjects but
ADNTI has been followed by ADNI-GO and ADNI-2. To date these three protocols
have recruited over 1500 adults, ages 55 to 90, to participate in the research,
consisting of cognitively normal older individuals, people with early or late MCI,
and people with early AD. The follow up duration of each group is specified in
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the protocols for ADNI-1, ADNI-2 and ADNI-GO. Subjects originally recruited
for ADNI-1 and ADNI-GO had the option to be followed in ADNI-2. For up-to-
date information, see www.adni-info.org.

Data used include baseline MRI of 835 subjects (T1-weighted MP-RAGE
sequence at 1.5 Tesla, typically 256 x 256 x 170 voxels with the voxel size of
approximately 1 mm x 1 mm x 1.2 mm). 835 subjects are grouped as

1. AD (Alzheimers disease), if diagnosis was Alzheimers disease at baseline (n
= 200);

2. NC (Normal Cognitive), if diagnosis was normal at baseline (n = 231);

3. sMCI (stable MCI) if diagnosis was MCI at all available time points, but at
least for 36 months (n = 100);

4. pMCI (progressive MCI), if diagnosis was MCI at baseline but conversion to
AD was reported after baseline within 1, 2 or 3 years, and without reversion
to MCT or NC at any available follow-up (n = 164);

5. uMCI (unknown MCI), if diagnosis was MCI at baseline but they are not
diagnosed at the end of the project. These subjects’ data were not used for
the classifier training.

We used different training sets based on this labeling to build the component
classifiers of our hierarchical scheme. We explain the details in Section 3.4.

2.2 Test data:CADDementia

The method was validated with 30 labeled images from CADDementia data
described in the challenge homepage !. These images were not used for training
nor parameter tuning. The essential difference between this data and the training
data is that the CADDementia images were acquired with 3 Tesla scanners.

2.3 Image preprocessing and features

All the images (train and test) were preprocessed in a fully automatic manner
by a pipeline similar to that described in [2]. Preprocessing of the T1-weighted
images was performed using the SPMS package? and the VBMS toolbox?, both
running under MATLAB. All T1-weighted images were corrected for bias-field in-
homogeneities, then spatially normalized and segmented into grey matter (GM),
white matter, and cerebrospinal fluid (CSF) within the same generative model
[9]. The segmentation procedure was further extended by accounting for partial
volume effects [10], by applying adaptive maximum a posteriori estimations [11],
and by using an hidden Markov random field model [12] as described previously
[13]. Only the GM images were used. Note that these images represent GM tissue
fractions in each voxel. Following the pipeline proposed by [14], the GM images

! http://caddementia.grand-challenge.org/home/
2 http://www.fil.ion.ucl.ac.uk/spm/
3 http://dbm.neuro.uni-jena.de/
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were processed with affine registration and smoothed with 8-mm full-width-at-
half-maximum smoothing kernels. After smoothing, images were resampled to 4
mm spatial resolution. See Figure 1 for an example slice of the original image
and preprocessed image.

Masking of the GM tissue fraction images results in aligned GM tissue frac-
tions from 29852 voxels. As discussed in [4, 7], the number of voxels significantly
exceeds the number of the available training data. Although our classifier is rel-
atively tolerant to high-dimensional data, it is still unable to process this high
number of features. Therefore, we initially reduce the number of features by
using a regularized logistic regression classifier, that has an inherent feature se-
lection property, on data from AD and NC classes (ADNI) [4, 7, 3]. The classifier
produces a set of good candidate subsets with different cardinalities, and the
most appropriate subset is selected by cross-validation. As a result, 309 voxels
were selected. Finally, age related effects were removed from the data by using
linear regression [15, 6].

(a)

Fig. 1. An example slice of the original image (a) and preprocessed image (b)

3 Classifier

3.1 Overview

A simplified flowchart of the training of the classifier is shown in Figure 2.
Details of this procedure are explained in Section 3.4. Important algorithmic
components, low density separation classifier and domain adaptation are briefly
described in Sections 3.2. and 3.3, respectively.

Our classification scheme is hierarchical. In the first step, we aim to separate
AD and NC subjects to different classes without caring to which class the MCI
subjects are classified. We term these disease classes (AD + MCI and NC +
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MCI) as the first level classes. Before the classification, we perform the domain
adaptation by using only AD and NC subjects in both datasets. In second step,
the first level classes are further divided to AD and MCI classes (AD + MCI) and
MCT and NC classes (NC + MCI) giving us the desired three class classification.
Note that the label of the subjects classified as MCI is independent of whether the
first level class was AD + MCI or NC + MCI. The rationale of this hierarchical
scheme is that the MCI is a transitional stage between the AD and normal aging,
however, not all the MCI subjects convert to AD and this makes the MCI class
very heterogeneous.

DA ( AD vs. NC)
LDS (AD vs. NC)

AD NC

DA ( ADvs. pMCI) DA ( pMClvs. sMCI)
LDS (AD vs. pMCI) LDS (pMCl vs. sMCl)

Fig. 2. Classifier structure. DA stands for domain adaptation. LDS stands for low
density separation.

3.2 Low density separation

We apply a semi-supervised learning (SSL) technique called Low Density Sepa-
ration (LDS) to train the three required component classifies in our hierarchical
scheme. We next explain the main ideas of the algorithm briefly; see [5] for fur-
ther details. Semi-supervised learning (SSL) approaches are able to use unlabeled
data in conjunction with labeled data in a learning procedure for improving the
classification performance. LDS is a semi-supervised learning algorithm which
relies on the assumption that there is low density region with little (if any) data,
which is where the decision boundary should lie.

The algorithm consists of two stages. First, it constructs a graph distance
derived kernel with the aim of increasing class separability and on the other hand
to increase the clustering within the classes. Heuristically, the distance between
the two nearest neighbors in feature space is incremented if they are far from
each other and decremented if they are close to each other. The definition of the
distance depends on the parameter p which we tune by cross-validation (see [5]
for details).

The second step consists of training a transductive support vector machine
with the graph-distance derived kernel to obtain the parameters for the dis-
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criminant function y = sign(wlx + b), where w is the weight vector (in the
transformed space), x is the image to be classified (in the transformed space),
y = {—1,1} is the label of x and b is the bias of the classifier. Vector w and bias
b are found by minimizing

1 N N+M
2 T * T
§IIW||2+C§:1L(yn(W Xn — b)) +C EN:HL(IW xn — b)),
n= n=

where (x,,yn),n = 1,..., N are the labeled data, x,,n = N +1,...,. N+ M
are the unlabeled data, L(-) is the hinge loss function, and C and C* are scalar
parameters. The value of C is selected by cross-validation within the training
data, and C* is set as in [5].

3.3 Domain adaptation

It is unlikely that the data from ADNI and CADDementia would follow the same
distributions conditioned on the disease labels. For example, the ADNI data we
use has been acquired with 1.5 Tesla scanners while the CADDementia data has
been acquired with 3 Tesla scanners. Techniques for addressing learning prob-
lems with mismatched distributions are often referred as domain adaptation or
transfer learning. The idea of these algorithms is try to improve the similarity of
the data from source (ADNI in our case) and target domains (CADDementia in
our case). When there is no labeled data from the target domain to help learning
classifiers, the problem setting is termed unsupervised domain adaptation. Here,
we utilize an information theoretic approach for the unsupervised domain adap-
tation [8]. We did not compensate for possible differences between the different
acquisition sites in the CADDementia data.

3.4 Detailed procedure

In the first level, the ADNI (AD and NC) subjects are used as source data and all
CADDementia data are used as target data for domain adaptation. After domain
adaptation, the AD and NC subjects from ADNI are used as training data for
AD + MCI and NC + MCI classes, respectively. In order to design the first level
classifier and the most important LDS parameters (C' and p) are tuned using 10-
fold cross-validation inside the training (ADNI) data. All CADDementia data
are used as unlabeled data for this classifier and eventually divided into two
groups. This is repeated 101 times to obtain the best possible parameter values
and the final class of the subjects is decided based on the majority vote. Based
on this procedure all the CADD data are divided into two groups, i.e., AD +
MCI group and NC + MCI group.

In the second level, to design AD vs. MCI classifier, the AD and pMCI
subjects of ADNI are used as the source data and the CADDementia subjects
classified to the AD + MCI class during the first level are used as target data
for the domain adaptation. After the domain adaptation the AD and pMCI
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subjects of ADNI are used as labeled data for training in order to design the
AD vs MCI classifier and the LDS parameters (C and p) are tuned using 10-fold
cross-validation inside training data. The CADDementia subjects classified to
the AD + MCI class during the first level are used as unlabeled data for the
LDS classifier and subsequently classified to AD and MCI groups. Again this
is repeated 101 times and the final label of the subject is decided based on the
majority vote.

In the second level, to design NC vs. MCI classifier, the sMCI and pMCI
subjects of ADNI are used as the source data and the CADDementia’s NC
+ MCI class from the first level are used as the target data for the domain
adaptation. After the domain adaptation the sMCI and pMCI subjects of ADNI
are used for training in order to design the NC vs. MCI classifier and the LDS
parameters (C and p) are tuned using cross-validation inside training data, again
repeating the procedure for 101 times. The classifier divides CADDementia’s NC
4+ MCI class into two subclasses, i.e. NC and MCI subclasses. The decision to
use sMCI subjects’ data as the training data for NC class was made based on
experimental grounds. In this phase, we balanced the numbers of pMCI and
sMCI subjects in the ADNI data by resampling in both domain adaptation and
classification phases because the number of sMCI subjects (100) is smaller than
the number of pMCI (164) subjects in the ADNI data.

3.5 Computation time

The total running time was approximately 9 minutes per image with a Matlab
based implementation. The computationally most heavy part was the image
pre-processing implemented in VBMS8 that required approximately 8 minutes
per image. The domain adaptation required, on average, 29.73 seconds per 100
images (domain adaptation cannot be performed for a single image). The LDS
classification and age removal required under one second per image. The domain
adaptation and classification were performed twice for each image (in the first
and second level).

4 Results

The classification accuracy on 30 labeled examples in the CADDementia dataset
was 0.767. Since we did not use the label information on the CADDementia
data, we consider this to be unbiased estimate of the classification accuracy.
The confusion matrix with this data is shown in Table 1. The confusion matrix
shows that there were no NC subjects mislabeled as AD subjects or vice versa.
However, there were mislabelings between MCI and AD and NC and MCI. This
is consistent with the MCI being a transitional stage between normal aging and
AD.
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True class|Predicted class
NC|MCI| AD
NC 91| 3 0
MCI 2| 7 0
AD 0| 2 7

Table 1. Confusion matrix

5 Discussion

We have proposed a method for dementia classification based brain MRIs. The
fully automated method recognized patients with AD or MCI from healthy con-
trols. The features for the classification were extracted from voxel-wise gray
matter densities computed based on aligned MRIs [2]. The classification method
was hierarchical, utilizing the fact that the MCI is a translational stage between
the AD and normal aging. The main novelties of the classifier were the utilization
of unlabeled data in additional to labeled data in order to improve the classifi-
cation [5] and the use of unsupervised domain adaptation to try to compensate
between the differences of the training and test data [8]. We have previously
demonstrated the utility of unlabeled data for predicting MCI-to-AD conversion
[4]. The method trained with ADNI data achieved an accuracy of 0.767 with the
public part of the CADDementia test data.
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