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Abstract. We propose an Alzheimer’s disease (AD) classification method
that uses selected features in segmented brain tissue from individual MRI
slices. The objective of our method is to aid physicians in classifying AD
progression, particularly for subjects with Mild Cognitive Impairment.
The proposed method captures atrophy of regions of the brain without
extracting specific regions such as the hippocampus. All subjects are reg-
istered to an atlas designed for AD research obtained from Laboratory of
Neuro Imaging (LONI) at University of Southern California (USC). Each
slice is segmented into grey matter (GM), white matter (WM), and cere-
brospinal fluid (CSF) to obtain the number of instances of these tissues
per slice. The features include the number of instances of a segmented
tissue in a given slice and the ratio of WM to CSF. The proposed method
uses existing tools for skull stripping, registration, segmentation, and fea-
ture classification. A 10-fold cross-validation on CADDementia training
data of 30 MRI samples yields 80% classification accuracy in classify-
ing the 3 different cognitive states such as Cognitive Normal (CN), Mild
Cognitive Impairment (MCI), and Alzheimer’s disease (AD). Our re-
sults show that all AD and CN patients are classified correctly, however,
subjects with MCI are misclassified mainly as the CN class. Although
a larger training data can enhance the classification result, we use this
limited training data to obtain our test results for 354 patients for this
challenge.

1 Introduction

The progression of AD is of great interest in medical research as 1 in 3 seniors
in the United States dies with dementia [1]. Based on signs and symptoms,
physicians usually track AD using the Clinical Dementia Rating (CDR) system.
Using CDR, subjects are classified in three states such as CN, MCI, and AD.
The progression of AD can be characterized by atrophy of GM and WM along
with expansion of CSF volume. These structural changes in brain facilitate the
distinction of an AD brain from a CN brain; however, the distinction between
MCI and CN is subtle [2]. Previous studies on classifying AD from MRI data
include features based on voxel intensity, volume, regional, and thickness of sub-
cortical areas [3]. Considering individual voxels of entire volume of MRI data is
computationally expensive. On the other hand, focusing on a particular region
of the brain may miss important structural changes happening in other regions
of the brain.



Fig. 1. Proposed algorithm pipeline.

Other methods include segmentation of the hippocampus [4]. For the MCI
class, where the changes are subtle, considering only a particular region of the
brain may not be helpful in classification. Rather than using individual voxels
or a particular brain region, we consider total number of pixels per slice from
the entire MRI volume for the purpose of feature extraction and classification of
the 3 different cognitive states. From each slice, the proposed method is based
on the total number of pixels per slice classified as GM, WM, and CSF and
their proportional relationships. The benefit of this approach is dimensionality
reduction where the structural changes in the entire MRI data are represented
in a feature dimension equal to the number of slices.

Since AD progresses differently among subjects, our approach captures fea-
tures from selected MRI slices while accounting for tissue atrophy. Starting with
all the slices to probe for structural changes in different tissues, this work applies
a trial and error method to select the slices that best represent the structural
changes for the best performance of 3-class classification. The search for the best
slices starts from the mid region of the brain where the slices encompass most
of the brain tissues.

2 Methods

2.1 Training data

The training data used for this work is obtained from the non-uniformity cor-
rected data from the CADDementia website [5]. This data set consists of 30
subjects structural MRI labeled AD, MCI, or CN. This training data set con-
tains MR image data labeled for 9 AD, 9 MCI, and 12 CN patient classes.

2.2 Algorithm description

The data processing pipeline is shown in Figure 1. The pipeline consists of five
major steps such as skull stripping, registration, segmentation, feature extraction
from slices, and classification. The steps of the pipeline are discussed in details
in the following paragraphs.



Data pre-processing Prior to feature extraction, the following pre-processing
steps are employed within the pipeline.

Skull stripping The MRI from each subject is skull stripped using the Brainsuite
software tool [6]. In general, default parameters are used in the skull stripping
process. However, if any scalp remains after stripping with default parameters,
the diffusion and iteration parameters are adjusted as necessary to remove the
remaining skull.

Registration Subject MRI scans are registered to the Alzheimer’s disease atlas
obtained from the LONI at USC using Deformable Registration via Attribute
Matching and Mutual-Saliency Weighting (DRAMMS) [7].

Segmentation The brain volumes are segmented into GM, WM, and CSF using
the Brainsuite classification tool [8].

2.3 Feature Extraction

Feature extraction: The features for our classifier are based on the segmented
tissues. GM and WM atrophy is expected of the AD class and to a less extent the
MCI class, while CSF volume simultaneously expands . We sum each segmented
class for each MRI slice to create features that capture atrophy of that specific
segmented brain tissue class. The sum represents the total number of instances
that a segmented tissue is classified as GM, WM, or CSF. For example, a slice
could be described as having 100 pixels, which might be further decomposed as
40 GM pixels, 35 WM pixels, and 25 CSF pixels after the tissue segmentation
step. Since we are expecting fewer instances of GM and slightly more instances
of CSF for a typical AD subject compared to a CN subject, the ratio of total
pixels for GM (given as slice GM) to total number of pixels for CSF (slice CSF)
should yield a larger number than the corresponding ratio of a cognitively normal
subject. We propose the features given as,

(1)

where slice CSF represents total number of pixel for tissue CSF in an MRI slice
and so on. A feature selection step is involved in order to select the MRI slices
that yield the best classification results. For 3-class classification, different multi-
class classifiers such as support vector machine SVM (with both Polynomial, and
RBF kernels) and random forest are evaluated for accuracy on the training data.
A 10-fold cross-validation is performed to find the best classifier and the feature
using the training data set. We use the combination of best performing feature
and classifier to classify the 354 test MRI samples for this challenge.



3 Results and discussions

3.1 Algorithm performance

Computation of skull stripping and segmentation takes approximately 1 minute
per subject, which is mainly the time to navigate on the graphical user (GUI)
interface of Brainsuite tool. Registration time varies for subjects from about 15
to 20 minutes each for each volume. The registration is completed serially on an
i7 processor with 8 gigabytes of RAM. Increasing the memory capacity of the
machine has the potential of speedup, as currently, there is excessive memory
swap. Analysis of the segmented tissues is performed serially in Matlab on a
MacBook with i5 processor and 8 gigabytes of RAM. This process is parallel, thus
it has potential for significant speedup. Since the proposed feature dimension is
only 46 per subject, it took only several seconds to classify the test data with
354 subjects.

The proposed algorithm is semi-automatic. The first few pre-processing steps
such as skull stripping and segmentation need manual intervention only to adjust
some parameters using the Brainsuite software tool. The Brainsuite GUI requires
only a few parameter modifications per subject for skull stripping. These adjust-
ments typically require 30 seconds of time, however, roughly 45 subjects required
15 minutes of parameter selection to remove the entire scalp. The subject reg-
istration is batch scripted in DRAMMS and thus completely automatic. The
remaining steps including per slice analysis of the segmented tissues, feature
extraction, and classification are all automated as well. Overall, the proposed
pipeline takes about 30 minutes per subject.

4 Classification performance

An MR image of a subject’s brain is a 3D volumetric data consisting of 128
slices. Following Eq. (1), each feature value represents the ratio of a pair of tis-
sue content in each slice. From pattern recognition perspective, not all slices
may contain discriminatory information that may be useful for 3-class classifica-
tion. There may be slices with redundant or irrelevant information, which may
introduce ambiguity in different class boundaries under classification. Following
a trial and error step, 46 slices from slice index 25 to 70 for each subject MR
data are found to be the most effective set of slices for the proposed 3-class clas-
sification. Figure 2 shows the range of the slices in the 3D volume. Fig. 2 shows
that the slices containing relevant subcortical areas such as hippocampus plays
major role in the proposed classification scheme.

The features proposed in Section 2.2.2 are extracted and used from these 46
slices. For each type of feature, there are 46 attributes per subject. Therefore,
for 30 subjects in the given training data set, the training data dimension is 30
by 46. 3-class classification is performed by training 3 possible binary classifiers.
Results from these binary classifiers are combined to yield the final multi-class
classification result. A 10-fold cross-validation is performed to evaluate the per-
formance of our proposed features in classifying 3-class MR images of brain.



Fig. 2. Location of the cross-sectional slices used for classification.

Before testing a fold of data, the binary classifiers are trained by the remaining
9-fold data. The final 10-fold classification accuracy is obtained by averaging the
accuracy from 10 individual folds of test data.

Table 1 shows the confusion matrix after 10-fold cross-validation using WM/CSF
feature and SVM with RBF kernel (SVM-RBF) classifier. Note that all the AD
and CN classes are correctly classified. However, MCI class is mostly confused
with CN class. The 10-fold cross-validation result shows 80% classification accu-
racy wherein 24 out of 30 samples are correctly classified in multi-class classifica-
tion. Table 2 shows area under the ROC curve for 3 different classes and different
classifiers . For classification, an SVM-RBF classifier is found to yield the best

Classified As –> AD MCI CN

AD 9 0 0

MCI 1 3 5

CN 0 0 12

Table 1. Confusion matrix for training data set after 10-fold cross-validation.

classification accuracy. Out of five different features, we find that (WM/CSF)
feature performs the best in classifying 3 classes. Therefore, we consider the same
SVM-RBF classifier and WM/CSF feature to classify the test data set.

The absolute proportion of WM, GM, and CSF yields poor classification ac-
curacy. This is understandable, since different subjects are likely to have different
proportion of tissues regardless of their cognitive status. Therefore, to have a rep-
resentative feature for a cognitive status regardless of the subject, the ratio of
different tissues within a subject can be a subject independent attribute. Since
subjects with cognitive impairment suffer atrophy in WM or GM with expan-
sion in CSF region, a ratio between WM or GM with CSF can be representative
feature for such classification. This is supported by our results shown above,



Classifier AD MCI CN Average

SVM-RBF 0.976 0.762 0.861 0.866

SVM-Poly 0.881 0.574 0.88 0.788

Random Forest 0868 0.624 0.861 0.792

Table 2. Area under the ROC curve for each class

which reveals a significant improvement in the classification performance using
(WM/CSF) feature.

5 Conclusion

We eagerly await the classification accuracy of the testing data set, so that con-
clusions can be made on the performance of this proposed approach. The classi-
fication accuracy also depends on the success and consistency in pre-processing
steps as well as on the training data size. Furthermore, the relatively poor clas-
sification between MCI and CN is due to the subtle differences between these
two groups. We believe that a larger training data set will yield an improved
performance in the classifying the test samples of MR images from 354 subjects.
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