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Abstract. This paper proposes a structural magnetic resonance imag-
ing (MRI) biomarker that combines a range of individual biomarkers
(cortical thickness measurements, hippocampal shape, hippocampal tex-
ture, and volumetric measurements) for the purpose of multi-class clas-
sification of Alzheimer’s disease, mild cognitive impairment and, normal
controls. The combination is achieved by entering the biomarkers as fea-
tures in a linear discriminant analysis. The fully automated method is
trained on a combination of two publicly available datasets and is eval-
uated on the training set from the CADDementia challenge. Test set
scores using two different priors are submitted to the same challenge.

1 Introduction

Structural magnetic resonance imaging (MRI) is an integral part of the diagnos-
tic work flow in many memory clinics. The modality allows for non-invasive in
vivo inspection of the degree and the location of brain atrophy, a hallmark of
several dementias including Alzheimer’s disease (AD), the most frequent type.
The importance of structural MRI has been underlined by the inclusion of MRI
volumetry as a surrogate biomarker of atrophy in international diagnostic guide-
lines for AD [13] and its prodromal stage, mild cognitive impairment (MCI) due
to AD [2].

Volumetry, and in particular hippocampal volumetry, is in general the most
widely studied and used MRI biomarker of AD, and there are already efforts to-
wards standardization of this biomarker [8, 12]. However, it is evident that there
are other sources of information, than what is captured by volumetry, to extract
from a structural MRI scan. This include cortical thickness [14] as well as less
established biomarkers such as the hippocampal shape [1] and the textural pat-
terns within the hippocampal tissue [15, 17]. Both shape and texture have shown
to provide volume-independent diagnostic or prognostic information, and to im-
prove prediction of conversion from MCI to AD when combined with volume [1,
15, 17]. Cortical thickness may be more reliable than volume in detecting differ-
ences between MCI and AD [14] and combining cortical thickness measurements
with volumetric measurements has shown good NC vs. AD discrimination [18].
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In this study, we propose to combine a range of volumetric measurements
with cortical thickness measurements, hippocampal texture, and shape, in order
to obtain a combination biomarker that uses more of the information contained
in a structural MRI scan. Such a biomarker has potential of improved diagno-
sis of MCI and AD compared to, e.g., a pure volumetry-based biomarker. To
the best of our knowledge, this is a unique combination of basic MRI biomark-
ers not tried before. The combination is achieved by entering all biomarkers as
features in a linear discriminant analysis (LDA). The proposed method is devel-
oped and trained on a combination of MRI scans from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) and the MRI imaging arm of the Australian
Imaging, Biomarker & Lifestyle Flagship Study of Aging (AIBL). The trained
method is then evaluated on the training set from the Computer-Aided Diag-
nosis of Dementia based on structural MRI data challenge4 (CADDementia),
a challenge at the 17th International Conference on Medical Image Computing
& Computer-Assisted Intervention. Two different test set scores using different
priors are further submitted to the CADDementia challenge.

2 Data

The following five datasets are used: the “complete annual year 2 visits” 1.5-T
dataset from the collection of standardized datasets recently released by ADNI
[19]; a subset of manual hippocampal segmentations from the Harmonized Hip-
pocampal Protocol (HHP) [8] and associated MRI scans; the MRI imaging arm
of AIBL [5]; and the CADDementia training and test sets. Table 1 summarizes
the characteristics of the datasets.

The ADNI dataset and the AIBL dataset are merged into one combined
dataset (termed ADNI+AIBL) that is used for training, and HHP is used in a
special purpose hippocampal segmentation method described in Section 3.3. The
CADDementia training set is used for evaluation. Finally, the CADDementia test
set is classified using the trained combination MRI biomarker, and the obtained
scores are submitted to the CADDementia challenge.

All MRI scans were conformed to 1 × 1 × 1 mm3 resolution followed by
bias correction. Both operations were performed using FreeSurfer (version 5.1.0,
default parameters) [7].

3 Individual MRI Biomarkers

A range of structural MRI biomarkers are used in the proposed combination
biomarker, which are the following: volumetry of brain structures and of the
ventricles, cortical thickness measurements, hippocampal shape, and hippocam-
pal texture. These biomarkers are detailed in the following subsections, and an
overview is provided in Table 2.

4 http://caddementia.grand-challenge.org/
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Table 1: Characteristics of the datasets.

n Age, years Male MRI field strength
(mean±std) (%) (1.5-T/3-T)

ADNI

Total 504 75.3±6.5 57.9 504/0
NC 169 76.0±5.1 50.9 169/0
MCI 234 74.8±7.0 66.5 234/0
AD 101 75.3±7.4 50.5 101/0

HHP

Total 40 74.1±7.4 47.5 40/0
NC 12 76.9±6.2 41.7 12/0
MCI 11 70.9±6.8 54.6 11/0
AD 17 74.2±8.6 47.1 17/0

AIBL

Total 145 75.4±7.4 44.6 1/144
NC 88 75.2±7.2 47.7 1/87
MCI 29 77.5±7.1 51.7 0/29
AD 28 73.6±8.1 35.7 0/28

CADDementia train

Total 30 65.2±7.0 43.3 0/30
NC 12 62.3±6.3 25.0 0/12
MCI 9 68.0±8.5 44.4 0/9
AD 9 66.1±5.2 66.7 0/9

CADDementia test Total 354 65.1±7.8 60.2 0/354

3.1 FreeSurfer Volumetry

Sub-cortical and ventricular volumetric measurements were computed using cross-
sectional FreeSurfer (version 5.1.0, default parameters) [7]. We used measure-
ments from ROIs provided by FreeSurfer (i.e., in the Aseg atlas). Bilateral ROIs
were joined. In addition to individual ROIs, we also computed total ventricular
volume and whole brain volume, resulting in a total of 7 volumetric FreeSurfer
measurements. All volumetric measurements were normalized for head size by
dividing by the intra-cranial volume (ICV) also computed during the cross-
sectional FreeSurfer pipeline.

3.2 FreeSurfer Cortical Thickness

Cortical thickness measurements were computed using cross-sectional FreeSurfer
(version 5.1.0, default parameters) [6]. We used measurements from the ROIs in
the Desikan-Killiany atlas that were joined into the four lobes and the cingulate
cortex5. Left and right hemispheres were further joined, resulting in a total
of 5 cortical thickness measurements. We did not normalize cortical thickness
measurements for head size (i.e., ICV) [18].

5 http://surfer.nmr.mgh.harvard.edu/fswiki/CorticalParcellation
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3.3 Hippocampal Volume

In addition to FreeSurfers estimate of the hippocampal volume, we also computed
the hippocampal volume using a special purpose algorithm. This was motivated
by the fact that hippocampal volume is the most widely used MRI biomarker of
AD [12] and FreeSurfer is not optimized for this structure specifically. The left-
and right hippocampus were segmented separately using a multi-atlas, affine reg-
istration, non-local patch-based segmentation (N-L Patch) technique [4, 3]. The
atlas comprised 40 segmentations from HHP [8] (12 NC, 11 MCI, 17 AD). All
40 HHP segmentations were used as atlases during pre-selection, but only the
9 most similar contributed to the final segmentation. A subset of 15 HHP seg-
mentations were used to cross-validate parameters (number of atlases used after
pre-selection, cubic patch size, and search volume size) using Dice’s coefficient.
The bilateral volume was computed and divided by FreeSurfers estimate of ICV.
N-L Patch has previously demonstrated a better AD diagnostic performance
than static FreeSurfer [4].

3.4 Hippocampal Shape

Two hippocampal shape scores (for the left and right hippocampus, respectively)
were computed as well. In a spirit similar to [1], a shape descriptor was computed
by aligning each hippocampus surface to a template hippocampus using iterative
closest point (ICP), followed by a mapping of 30 uniformly distributed landmarks
from the template to the hippocampus. The set of hippocampi, each now repre-
sented by 30 landmarks, were all aligned using generalized Procrustes alignment
[9]. Finally, principal component analysis was applied the set of aligned hip-
pocampus landmarks, and the components explaining 90 % of the variance were
retained. This representation was used as features in a naive Bayes classifer. The
feature extraction was performed on all data simulteanously, i.e., on the combi-
nation of ADNI+AIBL and the CADDementia data. Subsequently, only NC and
AD observations from ADNI+AIBL were used for training of the naive Bayes
classifier. The trained classifier was finally applied to score the CADDementia
data. The FreeSurfer hippocampus segmentation was used to defined the ROI
in each MRI scan. The whole procedure was computed for the left and the right
hippocampus separately, resulting in two hippocampal shape scores.

3.5 Hippocampal Texture

A hippocampal texture score was computed using a texture descriptor recently
proposed for quantification of chronic obstructive pulmonary disease in com-
puted tomography [16] in combination with a support vector machine (SVM)
with a radial Gaussian kernel. This specific MRI biomarker has previously shown
good results [15, 17]. The texture descriptor comprised marginal filter response
histograms of a 3-dimensional, rotation-invariant, multi-scale, Gaussian derivative-
based filter bank with the following scales: 0.6, 0.86, 1.2, and 1.7 mm. Compared
to [16], the Gaussian filter was excluded in order to be invariant to the lack
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of a standardized scale in MRI. The morphologically post-processed bilateral
FreeSurfer hippocampus segmentation was used to define the ROI. The texture
biomarker was trained on all NC and AD observations from ADNI+AIBL. The
training involved estimation of adaptive histogram binning for the different fil-
ters, and training of the SVM to separate NC from AD. During SVM training,
the width of the radial Gaussian kernel and the regularization parameter was
estimated using grid search in a nested cross-validation loop. The SVM was sub-
sequently trained on all training data using the optimal parameter combination.

4 Combination Biomarker

The individual MRI biomarkers {x(i)}i=1...N were combined by entering them
as features to a regularized linear discriminant analysis (LDA) with λ added to
the diagonal of the covariance matrices [10]. Prior to entering the LDA, each
individual biomarker x was z-score transformed dependent on the age of the
subject according to z = (x − µage)/σage. The age-dependent weighted mean,
µage, and the age-dependent weighted standard deviation, σage, of the biomarker
used in the transformation were estimated from the training set using an adaptive
width Gaussian interpolation kernel centered on the respective age. The age-
dependent z-score transformation was applied within each group, resulting in a

tripling of the features
{

z
(i)
NC, z

(i)
MCI, z

(i)
AD

}

i=1...N
. The LDA with λ = 0.001 was

trained directly for the three-class problem of discriminating NC, MCI, and AD
using ADNI+AIBL, and the Shark C++ library was used for this purpose [11].

Table 2: Overview of individual MRI biomarkers. Hippocampal shape and
hippocampal texture uses the FreeSurfer hippocampal segmentation as ROI.
FreeSurfer is not trained.

Biomarker Segmentation method Training

Cortical thickness
Frontal lobe FreeSurfer -
Parietal lobe FreeSurfer -
Temporal lobe FreeSurfer -
Occipital lobe FreeSurfer -
Cingulate cortex FreeSurfer -

Volumetry
Amygdala FreeSurfer -
Caudate nucleus FreeSurfer -
Hippocampus FreeSurfer/N-L Patch -/HHP
Pallidum FreeSurfer -
Putamen FreeSurfer -
Ventricular FreeSurfer -
Whole brain FreeSurfer -

Hippocampal shape FreeSurfer ADNI+AIBL
Hippocampal texture FreeSurfer ADNI+AIBL
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5 Results

The combination biomarker was evaluated by training on ADNI+AIBL and
scoring of the CADDementia training dataset. We also report average 10-fold
cross-validation performance on ADNI+AIBL with splits stratified on group
and dataset. The python script supplied by the CADDementia team is used
for this purpose, and the computed performance measures are described on the
CADDementia website6. The results are summarized in Table 3, and associated
receiver operating characteristic (ROC) curves and areas under the ROC curves
(AUCs) are shown in Figure 1 and confusion matrices in Table 4.

Table 3: Performance measures.

classification true positive fraction AUC
accuracy NC MCI AD Total NC MCI AD

CADDementia train 73.3 91.7 44.4 77.8 83.2 86.6 68.3 95.8

ADNI+AIBL 62.2 79.8 53.2 45.7 78.4 85.5 68.1 82.7

The proposed method is fully automated. Approximate computation time in
order to classify a new MRI scan is presented in Table 5 where we also provide
the computation time of individual components of the method.

(a) CADDementia train (b) ADNI+AIBL

Fig. 1: Per-class ROC curves and AUCs for the proposed combination biomaker.

Table 4: Confusion matrices. Rows are predicted and columns are true class.
(a) CADDementia train

NC MCI AD

NC 11 3 0
MCI 1 5 2
AD 0 1 7

(b) ADNI+AIBL

NC MCI AD

NC 205 74 13
MCI 48 140 57
AD 4 49 59

6 http://caddementia.grand-challenge.org/evaluation/
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Table 5: Per subject computation time divided into components.

Total (+FreeSurfer) FreeSurfer N-L Patch Shape Texture Combiner

∼1 (19) h ∼18 h1
∼40 min ∼0.5 min ∼15 min ∼1 sec

1 Median processing time due to high variability with some extreme out-
liers.

As seen from the confusion matrices, there was a tendency of classifying sub-
jects as too healthy (MCI as NC, AD as MCI). We therefore also produced a
second score using the following priors optimized for the CADDementia train-
ing set: P (NC) = 1/8, P (MCI) = 3/8, P (AD) = 1/2. These priors resulted in
a classification accuracy of 80 % on the CADDementia training set and in a
more balanced confusion matrix. The results of using these priors were submit-
ted to the challange as LDA-optimized-priors whereas the previous results were
submitted as LDA-equal-priors.

6 Discussion and Conclusion

In this paper, we proposed to combine a range of structural MRI biomarkers
for the purpose of multi-class classification of AD, MCI and NC. The individ-
ual biomarkers used in the combination were cortical thickness measurements,
hippocampal shape and texture, and volumetric measurements. Combining such
diverse biomarkers may potentially improve diagnostic performance from struc-
tural MRI. This is appealing because the modality is less invasive than state-of-
the-art biomarkers based on lumbar puncture and positron emission tomogra-
phy imaging that are directly measuring pathological hallmarks such as amyloid
load. However, despite this potential improvement and despite the inclusion of
biomarkers such as hippocampal texture that is sensitive to earlier stages of the
disease process, there were problems discriminating MCI from AD and NC (see
Table 4). Advancing performance further would probably need combination with
other non-structural MRI biomarkers such as the aforementioned.

Irrespective of this, a dementia diagnosis is in practice based on several
sources of information, such as neuropsychological assessment, physical exami-
nation, blood sampling, and visual inspection of some form of anatomical medi-
cal imaging (e.g., computed tomography or structural MRI), and structural MRI
biomarkers should be used in conjunction with all this information. The proposed
structural MRI combination biomarker is a promising direction for obtaining im-
proved diagnostic information from MRI to be used in clinical assessment.
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