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Abstract. Magnetic Resonance Image (MRI) analysis allows to find
patterns on physiological and pathological processes. Nevertheless, ex-
tracting MRI information posses a challenge due to high-dimensional
voxel-wise feature spaces. As an alternative, a new supervised kernel-
based representation approach for MRI discrimination is proposed. In
this sense, the shape features of brain structures is highlighted by the
inherent inter-slice similarities of a 3D MRI volume. For testing the pro-
posed approach, an SVM classifier is trained using the ADNI dataset
and tested on the CADDementia images for dementia diagnosis. At-
tained classification results (86% average accuracy on ADNI and 83% on
CADDementia) prove that our fully automatic methodology is able to
discriminate dementia patients.

1 Introduction

The use of Brain Magnetic Resonance Images (MRI) allows analyzing the in-
fluence of physiological and pathological processes on structural or functional
properties of brain regions [1]. Specifically, for Alzheimer’s Disease (AD), which
is the leading form of dementia, it is well-known that structures as grey matter
and hippocampus tend to be reduced [6]. Such facts have raised the interest
on the development automatic MRI discrimination tools for supporting the AD
diagnosis.

Some approaches in MRI discrimination are the following: In [2], an intro-
duced mean shift algorithm is employed to perform atlas stratification to deter-
mine whether each population is best represented the considered multi-modal
distribution. In [1], a ranked atlas selection is performed by computing image
similarities among subject images based on measures like sums of squared dif-
ferences (SSD), cross-correlation, or mutual information. In any case, those es-
timators do not guarantee convergence due to the involved highly-dimensional
spaces.

Here, to improve MRI discrimination, we propose a new kernel-based repre-
sentation based on the computed inherent Inter-Slice Kernel (ISK) relationship
that makes prominent brain structure distributions. Specifically, we compare
three different types of ISK-based feature representation to estimate pairwise



MRI similarities using generalized Euclidean metrics. We tune all needed met-
ric parameters by means of a centered alignment approach, so that the obtained
kernels resemble the most prior demographic information [4,3]. The proposed ap-
proach is tested on MRI data discrimination using dementia categories (namely,
Normal Control (NC), Late Mild Cognitive Impairment (MCI) and Alzheimer’s
Disease (AD)).

2 Proposed Algorithm Description

2.1 MRI Representation based on Inter-Slice Similarities

A 3D Magnetic Resonance Image (MRI) volume comprises a spatially structured
set of intensity voxels ¥={z,.€R : r=(i,j,k)}, where z, is the magnetic field
intensity measured at location r€ RCN?3. Provided this spatial structure, we
describe the MRI volume as an ordered set of 2D slices along the axis views as:

V= {sz GRLW,XLU” S {17 aLv}} (1)

where v is each one of the considered axes, noted as: azial, a, sagittal — s, and
coronal — ¢, © indexes the slices, L, corresponds to the volume size in the consid-
ered axis and L/, L,~ are volume sizes in the remaining axes. The arrangement
in Eq (1) provides a useful way to analyze MRIs by medical specialists since to
read information on the whole 3D volume is harder than on a single 2D slice. So,
we take advantage of this introduced slice view and propose the use of the Inter-
Slice Kernel (ISK) to encode pairwise similarities of the image slice set in the
vector, s’€RP» | with elements described as: Si; = KX {dx (XZ?’, XJ”) Vi < j} ,
where dx :REXLo" x RL*E0" SR is a used distance operator for implementing
the positive definite kernel function kx{-}, and P,=L, (L, — 1)/2, so s¥ becomes
the ISK representation of the image ¥ along each axis v. It is worth noting that
the ISK representation becomes much smaller than the original image space, i.e.,
L, (LU - 1)/2 L Ly Ly Ly

2.2 Learning MRI Similarities by Kernel Centered Alignment

We establish an MRI Similarity Kernel (MSK), K?€RY*¥ from a set of MRI
volumes {¥,, : n€{1,..., N}}, that is the ISK matrix version representing high-
dimensional image information along the axes, where N is the number of consid-
ered MRIs. Specifically, we perform MRI similarities, for every axis v, by com-
puting each pairwise relationship, k7,,€ K", between the ISK-based features as:

k. =ks{dsa (sp,sp)}t:n,me{l,...,N} (2)
where dga : R”» x R — R is a certain a distance operator implementing the
positive definite kernel function k¢{-}. In order to reveal the main ISK relation-
ships for learning MRI similarities, we rely on the Mahalanobis distance defined
in P,-dimensional space with inverse covariance matrix AVAYT as:

dsa®(sp,,s7,) = (s7, — s7,) A" AT (s}, —s7) (3)

n»Tm



where matrix AV€RF»*Pv holds the linear projection v=s" A", with v?€RPv
and D, < P,. Moreover, we propose to learn the matrix A” based on the already
estimated ISK-based feature similarities and by adding prior subject diagnosis
information enclosed in the matrix BERY*¥_ Thus, we measure the dependence
between both matrices K" and B through the following kernel target centered
alignment function [3,4]:

(HK"H, HBH),
|IHK H|| |[HBH|

p (K", B) = , p€[0,1] (4)

where H=I — N~'11", with HERY*VN is a centering matrix, 1€RY is an
all-ones vector, and notations (-,-)r and ||-,-||r stand for the Frobenius inner
product and norm, respectively. Generally, the centered version of the align-
ment coefficient in Eq. (4) gets better correlation estimates than its uncentered
version [4,3].

Therefore, we propose to learn MRI similarities from ISK-based features
taking advantage of the Kernel Center Alignment (KCA) cost function described
in Eq. (4). In this sense, prior patient information, e.g, demographic data as
age and gender, can be employed to reveal MRIs dependencies by learning the
matrix AV that parameterizes a Mahalanobis distance between pairwise images
(see Eq. (3)). Thereby, given a demographic-based similarity matrix B, a KCA-
based function can be formulated to compute the projection matrix A” in Eq. (2)

as:
A" = argmaxp (K., B), (5)

where K., is the resulting MSK matrix for a provided A" projection as given
in Eq. (2). Consequently, we term each K%.. as a Learned MRI Similarity
Matrix (LMSK).

2.3 MRI Discrimination using LMSK

The proposed LMSK is learned from an MRI Mahalanobis distance as in Eq. (4).
With regard to the needed kernel functions, because of its universal approximat-
ing capability [5], we choose the well-known Gaussian kernel noted as follows:

9{du (2,2) 10} 2 exp (=, (2,2)° /(20%))

where c€R™ is the kernel bandwidth; z, 2’ € Z is a sample pair in a given feature
space Z, and d,:ZxZ—R is a distance operator in Z. In this sense, we calculate
each ISK-based feature vector s” from MRI using the Frobenious norm:

sy =9 (X)) = XJllrio,) - (6)

Afterwards, we calculate each KV matrix encoding pairwise MRI relationship
as in Eq. (2), yielding:

v

Km = 9 (dsa(sy, 87,);054,) - (7)



We optimize the KCA-based cost function in Eq. (5) to learn AY by a gra-
dient descent solver, where the initial feasible solution is calculated by the
Principal Component Analysis algorithm. In addition, the elements of the la-
bel kernel B are set as: by, =0 (¢, — ¢m ), being § the delta function and where
en€{1,2,...,C} is the label of ¥,,. Namely, three classes are considered from the
CADDementia Challenge dataset: Alzheimer’s disease (AD), late mild cognitive
impairment (MCI) and healthy controls (NC). It is worth noting that every ker-
nel bandwidth in Eqns. (6) and (7) must be properly tuned. Since the variability
of the Gaussian kernel g(-; o) tends to zero whenever the kernel bandwidth tends
to either zero or infinity to get an appropriate o value spanning widely all sim-
ilarity values, we propose to adjust the Gaussian kernel bandwidth employing
the following criterion (Notation var(-) stands for the variance operator):

o* = arg max {var(g(-;0)} (8)

3 Dataset and Preprocessing

For training the proposed MRI discrimination approach, the ADNI dataset was
employed. Specifically, a subset of 451 3T MRI volumes are considered from sub-
jects aged from 55 to 90 years (148 NC, 205 MCI, and 98 AD). Provided images
are bias filtered using the well-known N3 algorithm. As a further preprocessing
stage, each image is registered to the MNI305 template by an affine transform
to reference the whole dataset to the Talairach space.

4 Results

Figs. 1(a) to 1(c) show a concrete MRI example illustrating all three views. As
seen in Figs. 1(d) to 1(e) displaying their corresponding estimated ISK repre-
sentations, the red corner patches keep the MRI edges with no content, i.e., the
background. Moreover, as the Sagittal ISK (see Fig. 1(e)) exhibits symmetry
respect to the anti-diagonal, it is clear that such representation is able to keep
the head sagittal symmetry. Therefore, due to the kernel shape varies accord-
ingly to the brain structure distribution, we infer that proposed ISK suitably
characterizes head shapes.

Using the above proposed feature extraction stage, a new MRI similarity
matrix, comparing each pair of subjects, is learned using the LMSK approach.
The prior diagnosis information matrix B and the resulting similarity matrix
K" are depicted in Fig. 2(a) and Fig. 2(b) using the coronal axis view (v = ¢),
respectively. From both Figures, it can be seen how the resulting kernel resembles
the most the prior label matrix. For the sake of visualization, resulting LMSK is
decomposed using the well-known PCA and the first three eigen-components are
shown in Fig. 2(c), where the three considered classes can be clearly identified.

For the sake of evaluating the proposed approach a Support-Vector-Machine-
based classifier is trained over the LMSK representation using the whole ADNI
dataset and tested on the CADDementia MRIs. Obtained class-wise Receiver



4020 020 40 60 80 0 50
sics ] sice [mm]

(d) Axial (e) Sagittal (f) Coronal

Fig. 1: Database subject and their estimated ISK representation per view
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Fig.2: LMSK results

Operating Characteristic (ROC) curve for both datasets is depicted in Fig. 3,
while the confusion matrices are shown in Table 1. The Fig. 3 shows a lower area
under the curve for the second class, as the Table 1 shows the lowest accuracy for
that class. Both facts imply that MCI subjects are the most difficult to classify,
which can be due to the wide spread class distribution (see green subjects in
Fig. 2(c)). From a morphological perspective, the low accuracy in MCI subjects
can be related to nature of such class. Since MCI is an intermediate class be-
tween Healthy and Alzheimer’s Disease classes, those subjects tend to be more
misdiagnosed than the ones belonging to NC and AD.

5 Conclusion

A new supervised kernel-based image representation is introduced for automatic
MRI-based discrimination of dementia. The proposed approach encodes inter-
slice similarities, which are related to the shape features of brain structures.
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Fig. 3: Obtained ROC curve for training MRIs in the ADNI and CADDementia
datasets.

Table 1: Dementia classification accuracy |%]
(b) CADDementia
(a) ADNI 86% 83.3%
Class| CN|MCI|AD| |Class| CN|MCI|AD
CN (87.8| 9.8 |4.1 CN |100| © 0
MCI|74|81.5|7.1| | MCI| 0 |0.66 |0.34
AD (48| 8.7 888/ | AD | 0 |22.2|77.8

Table 2: Computation time per subject of all methodology stages
Stage Time [s]
Registration (Rigid) 21.60 £ 7.74
Feature extraction (LMSK)|0.05 £ 0.01
Classification (SVM) 0.65 £ 0.01
Total 22.3

Furthermore, an SVM is trained using the LMSK representation for classifying
three dementia categories (NC, MCI and AD). Taking into account the obtained
results over the ADNI and CADDementia datasets, our proposed representa-
tion proves to find the natural inherent distributions of MRI. The methodology
achieves 86% average classification accuracy on the ADNI training set and 83%
on the CADDementia, using the coronal axis view. It is important to highlight
that all stages on the current methodology are fully automatic. As future work,
we plan to evaluate axis view combination strategies and the inclusion of patient
demographic data for enhancing the representation and class separability.
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