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Abstract. Hippocampi and medial temporal lobe (MTL) structures
are notoriously among the first anatomical districts to be troubled by
Alzheimer’s Disease (AD). Accurate atrophy quantification for tempo-
ral and cortical brain structures is considered a promising marker for
prodromal AD, thus the urge upon finding suitable automatic tools to
perform voxel-based-morphometry tasks such as anatomical structures
segmentation, shapes outlining and features selection.

We propose an original neuroanatomical approach, called “Global Dis-
ease Index” (GDI), stemming from the methodology appeared in [1]. It is
a profound reworking of that procedure, based on local analysis of 9 MRI
regional volumes of interest (VOIs) containing relevant MTL structures.
These VOIs are filtered by means of a Random Forest classifier in order
to enhance peculiar image features found to be the most significant to
discriminate between cognitively normal subjects and Alzheimer’s Dis-
ease patients. These features are subsequently processed with a Random
Forest and a Support Vector Machines classifiers, providing an assess-
ment of MTL atrophy in the form of a classification index.

The procedure proved to be a robust and reliable tool, able to distin-
guish with fine accuracy CN, AD and MCI. On MICCAI’s CADDementia
Grand Challenge provided train data, GDI has demonstrated a detection
power of 93.5%, 68.9%, 92.6% of AUC for CN, MCI and AD cohorts re-
spectively, supporting the reliability of the overall algorithm.
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http://www.loni.ucla.edu/ADNI/Collaboration/ADNI_Authorship_list.pdf.



1 Introduction

The past 10 years have seen a growing consensus that the atrophy of medial
temporal lobe structures can potentially be crucial to capture early AD onset
and disease progression by means of T1-weighted MR images analysis. In par-
ticular atrophy of the hippocampus induced by AD may reasonably be a specific
biomarker of pathology progression, known that volume loss in hippocampi is
strictly connected to increasing impairment in cognitive performances of afflicted
the subjects [2]. This fact justifies the need of defining reliable quantification
methods to assess changes in MTL morphology. In the case of hippocampal
volume, a commonly accepted and clinically validated automatic segmentation
procedure would quickly replace traditional time-consuming and rater-dependent
manual tracing protocols.

Automatic approaches are introduced, as the one proposed in [3], permitting
accurate extraction of desired Volumes of Interest (VOIs) from MRI, on which
voxel-based morphometry indicators can be computed.

We present in this work an analysis pipeline build to automatically assess the
progression of brain atrophy brought by AD in medial temporal lobe structures.

The technique, named GDI, is based on major improvements of the feature
selection and classification procedure seen in [1], to study intensity and tex-
tural characteristics of a set selected volumes surrounding MTL structures to
discriminate AD and CTRL subjects.

The core of the methodology is the local analysis of 9 MRI regions of inter-
est containing relevant MTL anatomical structures. These VOIs are filtered by
means of a Random Forest (RF) classifier in order to select, in the target MRI,
image features previously found to be significant to discriminate between CN
subjects and AD patients. These voxels are are processed with classifiers (RF
plus SVM), providing an index assessing overall MTL atrophy.

2 Materials & Methods

We propose an improvement of the procedure designed in [1]. The procedure is
fully automated and needs an average time of 45 minutes to complete a single
subject scan analysis, on an average single core computer with 2.27 GHz, 64
bit system. We noticed that GDI analysis speed depends more on computer
clock-cycle than on its memory or file system characteristics. The most resource
demanding steps in the pipeline are registrations and volumes extractions.

2.1 Subjects

Data used in the preparation of this work consist in a sample of 551 baseline
MRI, of just as many subjects, downloaded from the Alzheimer’s Disease Neu-
roimaging Initiative (ADNI) public database

(http://www.loni.ucla.edu/ADNI/Data). Images were acquired all with 1.5 T



scanners, whilst scanners’ type can be different and used with different acquisi-
tion protocols.
Statistical information on this training cohort is summarized in Table 1.

Table 1. ADNI train sample.

Cohort Size Gender Age

CN 190 95 M, 95 F 76.6 = 5.5
AD 195 66 M, 79 F 76.6 = 7.8
MCI 166 71 M, 45 F 75.5 £ 7.4

AD cohort includes 50 MCI subjects who converted to AD after a follow-up of
2 years (MCI-conv), while MCI cohort includes only MCT subjects who retained
the same clinical assessment after a follow-up of 2 years (MCI-nonconv). The
ground for the decision to merge the MClI-conv into the AD cohort, was to keep
the MCT cohort, with only MCI-nonconv, distinct from the AD [6, 7].

The 30 MRI provided by CADDementia organizers are employed to fine tune
the procedure free parameters. 13 of these scans come from the EMC: Erasmus
MC center (Rotterdam, the Netherlands), 3 scans from the UP: University of
Porto - Hospital de Sao Joao, and 14 from the VUMC: VU University Medical
Center (Amsterdam, the Netherlands).

2.2 MRI analysis

The main steps of GDI workflow are image preprocessing (noise reduction and
registration), multiple template-based anatomical structure registration, extracted
volumes intensity normalization, features enhancement, and Random Forest plus
Support Vector Machines features classification.

Each target image is processed with a pyramid noise-filtering algorithm [4]
to promote image uniformity across sites and machines. The difference with
respect to previous paper is that the 3 thresholds NV; necessary to extend to 3D
the algorithm are no longer automatically calibrated for every image and every
direction based on the Structural Similarity Index (SSI) curve, but are replaced
with a single fixed value corresponding to the mean value of all N; calculated
on training data in the original procedure. The reason behind this choice is that
dynamic threshold denoise was found to much invasive and image dependent. A
fixed threshold sensibly reduces running time of denoising module.

De-noised scans are then registered and re-sampled onto the Montreal Neu-
rological Institute (MNI) ICBM152 reference, with a 1mm? isotropic grid [5].
The 3-fold registration process of the ancestor paper has been substituted with
a faster, single registration process implemented with Insight Toolkit (ITK,
www.itk.org/). Each incoming image is subjected to a rigid registration with



7 degree of freedom (similarity registration) and to an affine registration. This
simplified and faster workflow has comparable performances to the original one.

Once preprocessed in this way, each MRI is sampled with 9 VOIs with dif-
ferent dimensions placed around pertinent biological entities in MTL and cortex
(refer to Figure 1), to reduce analysis burden. This VOIs are chosen to include
those temporal lobe structures that are known to be affected in early AD, such
as the entorhinal, perirhinal cortex, hippocampus and parahippocampal gyri, ir-
respective of normal inter- and intra-individual variability. Two additional VOIs
are chosen as control volumes, in regions known to be relatively spared in early
AD.

This extraction operation, producing parallelepiped-shaped volumes contain-
ing the desired anatomical structures, is carried on, in order to preserve accurate
anatomical correspondence, by means of a rigid registration using references; i.e.
a registration of several predefined VOIs onto the subject MNI-normalized brain.
There are at least 8-10 references for each contra-lateral target object.

These template VOIs are designed to capture the morphological differences
among subjects showing varying degrees of neurodegeneration, ranging from
healthy elderly to severe AD. Details on the generation of VOI references can be
found in [3].

VOI extraction step has the advantage of providing a reliable method to
circumscribe noticeable structures and nearby tissues with reasonably high ac-
curacy and reproducibility among subjects and machineries.

The intensity normalization operation is now applied on registered boxes.
Mean values of CSF/Gray Matter/White Matter within the target VOI are
obtained with k-means cluster analysis [8].

New intensity values are obtained by non-linear matching of these 3 values to
the 3 mean segmented cluster values found for a n = 50 x 120 x 50 voxel region
extracted around the corpus callosum of the MNI template. This mapping is
extended to intermediate intensities with a smooth piece-wise polynomial curve.

All 9 normalized VOIs from each MRI are now filtered to highlight a reduced
set of relevant voxels.

We used 18 different filters (Gaussian mean, standard deviation, range, en-
tropy and Mexican-hat filters calculated on different voxel neighbourhoods),
therefore the feature set for each subject under analysis consists of the ensemble
of all voxels of the filtered VOIs extracted from its MRI. These features are
subsequently pruned by means of RF, keeping the 85% most significant ones in
terms of training set CN vs AD distinction [1].

On the output restricted collection of MRI features a Random Forest and a
Support Vector Machines classifiers are built.

GDI value is then calculated combining the outcome of the 2 classifiers: a
weighted mean of the two values is computed, considering the GDI intervals in
which every classifier is more reliable.



VOIn. Main anatomical structures

1 Hippocampus, enthorinal cortex (right)
2 Hippocampus, enthorinal cortex (left)
3 Amigdala (right)

1 Amigdala (left)

5 Middle and inf. temp. gyrus (right)

6 Middle and inf. temp. gyrus (left)

7 Insula- Sup. temporal gyrus (left)

bl Rolandic (right)
)
Rolandic (left)

Fig. 1. (Above Left) VOI size and positioning displayed on the MNI reference image.
VOI n. 1,2: red; VOI n. 3,4: green; VOI n. 5,6: yellow; VOI n. 7: cyan; VOI n. 8,9: ma-
genta. (Above Right) Main gray matter structures captured in the VOIs; [a] potentially
significant regions; [b] control regions. (Below Left) Intensity normalization VOI size
and positioning displayed on the MNI reference image. Such a region serves as basis
for the histogram matching procedure, following the segmentation into CSF/GM /WM.
(Below Right) Example of hippocampal VOI registration on a test subject.



2.3 Classification

Each subject is given a membership probability to each group (CN, MCI and
AD). Probability Distributions, depicted in Figure 2, are generated with the GDI
values coming from the classification of the 30 CADDementia train images.

The GDI index of a new image is evaluated as member of all PDF curves,
producing 3 probability values in CN, MCI and AD distributions.

These values are normalized to one and the final class is assigned to the
subject with a winner-takes-all scheme (the class with the greatest probability
is the winning one).
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Fig. 2. Probability density estimates calculated from the 30 CADDementia training
images. The restricted number of samples is the reason why curves show some bumps.
The integral of each curve equals 1.

AUC CN vs AD = 0.93
AUC CN vs MCI = 0.78
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Fig. 3. Performances for the distinction of CN from AD (black curve), CN from MCI
(blue curve) and MCI from AD (magenta curve) on CADDementia training sample
(Left) and on ADNI sample data (Right).



3 Results

GDI index discriminates, in Leave-20-Out cross-validation, CN from AD, CN
from MCI and MCI from with AUC values of 0.97 (sensitivity = 0.94 @ specificity
= 0.90), 0.71 (sensitivity = 0.77 @ specificity = 0.78) and 0.85 (sensitivity 0.86
Q@ specificity = 0.64).

The classification results on CADDemetia train dataset stands at AUC values
of 0.93 for CN vs AD discrimination (sensitivity = 0.92 @ specificity = 0.88),
AUC = 0.78 for CN vs MCI (sensitivity = 0.92 @ specificity = 0.67) and 0.8 for
MCI vs AD distinction (sensitivity = 0.89 @ specificity = 0.62).

This outcomes can also be seen in terms of One-versus-All classes detection.
In this case CN subjects are identified with AUC of 0.935, MCI with AUC of
0.689 and AD with AUC of 0.926. The accuracy of the CN/MCI/AD classifica-
tion on the CADDementia training data is 0.733. Performances are represented
in Figures 3 and 4.

On the other hand blind classification of the test population delivers 146
subjects as cognitively normal, their GDI index centered on a mean value of
0.85 with a standard deviation of +0.06, 125 as mild cognitive impairment (GDI
in 0.51 +0.16) and 83 as Alzheimer’s Disease (GDI in —0.31 & 0.29).

Classification index strictly depends on the goodness of the registration out-
come. At the end of the automatic process we visually checked the registered
images finding that a very little percentage of them has been poorly registered.
This fact had not prevented the algorithm to proceed, so that we have no missing
data in our analysis. However we reckon that this fact produces an uncertainty
on our results which can be quantified: 3% on ADNI and 6 subjects in 354 on
the CADD test sample.

4 Discussion

GDI procedure needs an average cpu-time of 45 minutes to process a 1.5T MRI
and provides an index that is an assessment of MTL atrophy progression. GDI
index reliability strongly depends on image registration process, and we noticed
that approximately 3% of processed image is not properly registered. Neverthe-
less this index has been used to detect CN, MCI and AD cohorts in CADDe-
mentia train dataset with fine accuracy (93.5%, 68.9%, 92.6% respectively).

Incidentally, we have developed a filter testing registration accuracy by means
of simple correlation coefficient with the reference template, in a way that we’ve
been able, during training phase with ADNI data, to reject little correlated
registration outcomes or to re-register them with more suitable parameters.

For what regards classification results, the not so optimal performances on
CN vs MCI distinction can be explained looking at the consistent overlap of their
probability distributions. On the contrary, MCI and AD present a delicate area
of overlap (around 0.2), while CN and AD populations are almost completely
separated in terms of GDI index (Figure 2).
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Fig. 4. (Above) ROC curves for the detection of CN, MCI and AD for all training data
of CADDementia challenge together, and (Below) considered separately for each of the
three provided database subsets EMC, UP, VUMC (see 2.1).

5 Conclusions

In the current study we have shown an automatic system providing an index
working as an objective measure of hippocampal and temporal lobe atrophy and
its performance on the training and test data available in CADDementia.

The algorithm characteristics - such a speed and required computational
resources - make it suitable to work on grid environment or to be provided as
remote web-service.
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