MIND-BA: Fully automated method for
Computer-Aided Diagnosis of Dementia based
on structural MRI data.

S. Tangaro!, P. Inglese!, R. Maglietta?, A. Tateo!

L Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Italy
2 Istituto di Studi sui Sistemi Intelligenti per ’Automazione, CNR, Bari, Italy
for the Alzheimers Disease Neuroimaging Initiative **

Abstract. Neurodegenerative diseases are frequently associated with
structural changes in the brain. Magnetic Resonance Imaging (MRI)
scans can show these variations and therefore be used as a supportive fea-
ture for a number of neurodegenerative diseases. The hippocampus has
been known to be a biomarker for Alzheimers disease and other neurolog-
ical and psychiatric diseases. However, it requires accurate, robust and
reproducible delineation of hippocampal structures. This work utilises a
datasets consisting of MR images shared by EADC-ADNI working group
. Hippocampus volume is a feature used in this analysis. For the other fea-
tures we used publicly available brain segmentation package FreeSurfer
v.5.1 (FS) (freesurfer.nmr.mgh.harvard.edu) [17] to process the struc-
tural brain MRI scans and compute morphological measurements. The
FreeSurfer pipeline is fully automatic and provides 184 features per MRI
scan in total. Volumes of cortical and sub-cortical structures such as
the caudate and average thickness measurements within cortical regions,
such as the precuneus. We use the FS features but for hippocampus
volume we use the segmentation proposed in [16]. For the diagnosis clas-
sification we passed all the features to a C-Support Vector Classifier
(C-SVC) with a linear kernel on a 5-fold cross validation. The goal is
evaluating the performance of an algorithms for multi-class classification:
AD, MCI and controls. Methods that are developed for binary classifica-
tion can be used for three-way classification by using either a one-vs-one
(ovo) or one-vs-all (ova) strategy. In this approach, three classifiers are
trained for the three binary problems using the ovo methodology and
thereafter their outputs are combined into three predictions.

** Data used in preparation of this article were obtained from the Alzheimers Disease
Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investiga-
tors within the ADNI contributed to the design and implementation of ADNI and/or
provided data but did not participate in analysis or writing of this report. A com-
plete listing of ADNI investigators can be found at: http ://adni.loni.usc.edu/wp —
content /uploads/how_to_apply /AD N I_Acknowledgement_List.pdf



1 Introduction

In the last few years the enormous development of neuroimaging has deeply al-
tered the research and clinical prospects in the field of neurodegenerative disor-
ders. This has been particularly relevant for Alzheimerss disease (AD), the most
common dementia in the world, affecting currently over 36 millions of people
(World Alzheimer Report 2011), a number destined to grow due to the increas-
ing aging population. AD is characterised by the formation and deposition of
abnormal proteins in the brain, with subsequent functional disruption, neuronal
suffering and cell death (neurodegeneration), the latter ultimately translated
into a loss of brain volume (atrophy). The cognitive decline is related to the
degree of brain atrophy, which accelerates with the progression of the disease, as
detected on MRI at a rate of 2% per year for the whole brain (versus 0.2 — 0.5%
in normal aging), and at a rate of 5% per year for the hippocampus, a complex
structure located in the medial temporal lobe with a primary role in memory
and learning, thus making hippocampal atrophy the most important imaging
biomarker of the condition [2]. It is not surprising, then, that the accurate mea-
surement of hippocampal volume, is of crucial importance and has become the
focus of an increasingly large body of work. Until recently the segmentation of
the hippocampus, ie its identification and separation from surrounding brain
structures, had been performed mainly manually or with semi-automated tech-
niques, followed by manual editing. This is obviously time-consuming and sub-
ject to investigator variability, so a number of automated segmentation methods
have been developed. These have relied so far mainly on image intensity-based
methods, often adopting multi-atlas registration approaches, in order to min-
imize errors due to individual anatomical variation. More recently, though, a
number of methods that exploit shape information have been developed, based
on preliminary work carried out in the nineties with the Active Shape Models
(ASM) [1] and the Active Appearance Models (AAM) [3]). ASM address the is-
sue of identifying objects of a known shape in a digital image when the shape is
characterized by a certain degree of variability, as in the case of anatomical struc-
tures. AAM combine grey-level information with shape information provided by
a training set, but this may fail to capture the intrinsic variability of biological
structures, a limit attempted to overcome by the use of the wavelet transform
and the principal component analysis (PCA) [4]. Alternative methods have used
deformable representations or deformable M-reps [5]. Also, algorithms that asso-
ciate geometric information (obtained by expert priors or learning procedures in
a Bayesian framework) to powerful statistical tools, such as region competition
algorithms (Zhu and Yuille, 1996) have been combined with homotopic defor-
mations in automated hippocampal segmentation methods[6]. Recent work has
employed probabilistic tree frames for brain segmentation [7], at times adopting
specific models such as Markovian random fields or graphical cuts [8]. The use of
machine learning techniques enables the processing of high-dimensional feature
vectors without time-consuming computations thanks to optimization proce-
dures. Alternative approaches involve, for example, labeling strategies combined



with other methods such as multiple segmentations [9], longitudinal 4-D methods
with graph cuts [10] and label fusion with template libraries [11].

2 Materials

This work utilises two datasets named DB — 1 and DB — 2. DB — 1 consists
of 98 MR images and their corresponding expert manual labels. The dataset is
shared by EADC-ADNI working group using a standard harmonized protocol
(www.hippocampal-protocol.net). The most inclusive definition of the Harmo-
nized protocol [12] may limit the inconsistencies due to the use of arbitrary lines
and tissue exclusion of the currently available manual segmentation protocols.
The second dataset used -DB — 2, is from ADNI screening images and cosists of
160 MR images. The two databases used are described with demographics given
in table 1.

Data|Size| Age |M/F Subjects

DB-1| 98 | 60-90 |56/44|29 NC - 32 MCI - 37 AD
DB-2{16028 - 96|76/84| 68 NC -63 MCI - 29 AD
Table 1. Description of database used. Group size, range age (years) and sex of the
two clinical datasets, containing normal control (NC) subjects, Alzheimer’s Disease
(AD) and mild cognitive impairment (MCI) patients.

As data for the evaluation framework, CADDementia project composes a
multi-center data set consisting of 384 scans. The participating centers are: Eras-
mus MC (EMC), Rotterdam, the Netherlands; VU University Medical Center
(VUmc), Amsterdam, the Netherlands; University of Porto / Hospital de So Joo
(UP), Porto, Portugal This data set contains structural MRI (T1w) scans of
subjects with the diagnosis of probable Alzheimers disease (AD), mild cognitive
impairment (MCI) and participants without a dementia syndrome (controls). In
addition to the MR scans, demographic information (age, gender) and informa-
tion on which data are from the same institute is included. A large set is needed
for comparison of the different methods. In addition, a large set increases the
scientific value of our framework, as the data better represents a clinical popu-
lation.

Most of the data is used for evaluation of the methods: 354 MRIs for the test
set. Additionally, a small training dataset is provided, which consists of 30 scans
distributed over the diagnostic groups was added to our training set.

3 Methods

Statistical classification is an active area of pattern recognition and computer
vision research in which scalar- or vector-valued observations are automatically



assigned to specific groups, often based on a training set of previously labeled ex-
amples. In medical imaging, different types of classification tasks are performed,
e.g., classifying image voxels as belonging to a certain anatomical structure, or
classifying an individual scanned into one of several diagnostic groups (disease
versus normal, semantic dementia versus Alzheimers disease, for example). We
use a fully automated method for voxel classification in a brain MRI scan as
belonging to the hippocampus versus not. In this method a procedure of train-
ing dataset selection based on active learning machine is used during learning of
voxel classification according to their Haar-like features, variables that describe
complex images based on a statistical analysis of adjacent groups of voxels. The
system consists of three processing levels: (a) linear registration of all brains
to a standard template and automated method to capture the global shape of
the hippocampus. (b) Feature extraction: all voxels included in the previously
selected volume were characterized by 315 features computed from local informa-
tion. (c) Voxel classification: a Random Forests algorithm was used to classify
voxels as belonging or not belonging to the hippocampus. The procedure has
been detailed in [13, 14, 15, 16].

Hippocampus volume is a feature used in this analysis. For the extraction
of the other features we used publicly available brain segmentation package
FreeSurfer v.5.1 (FS) (freesurfer.nmr.mgh.harvard.edu) [17], which aim is to
process the structural brain MRI scans and compute morphological measure-
ments. The FreeSurfer pipeline is fully automatic and provides 184 features per
MRI scan in total. Volumes of cortical and sub-cortical structures such as the
caudate and average thickness measurements within cortical regions, such as
the precuneus. We use the FS features but for hippocampus volume we use the
segmentation proposed in [16].

For the diagnosis classification we passed all the features to a C-Support Vec-
tor Classifier (C-SVC) with a linear kernel on a 5-fold cross validation. Specif-
ically, CTRL vs MCI, CTRL vs AD, and MCI vs AD classifications were com-
puted, after that the three probabilities were combined using the formula [20],
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where ¢;; represents the output of the ovo classifiers. Since C-SVC does
return only predicted class labels, we used the Platt scaling [23] to generate
posteriors from the output of binary classifiers.

The five-per-pair binary classifiers were then used to predict the diagnosis
of the blind test set, by averaging the posteriors over all the cross validation
rounds. Final classification is obtained with a max-wins-all rule on the three

class posteriors.

3.1 Computational infrastructure

The method is developed in ITK and MATLAB framework for hippocampus
segmentation and we use FS to brain feature extraction. The computational



resources required is about 13 hour per image. Therefore the availability of dis-
tributed computing software environments and adequate infrastructures was of
fundamental importance.

In this study, the LONI pipeline processing environment [21, 22] was used:
a user-friendly and efficient software for complex data analyses, available at
http://pipeline.loni.ucla.edu.

The present study was carried out using the local computer farm BC2S 3: a
distributed computing infrastructure consisting of about 5000 CPU and allowing
up to 1,8 PB storage. A further study for grid deployment was also performed,
with the aim of creating a pipeline tool suitable for large clinical trials. It was
carried out on the European Grid Infrastructure (EGI) which consists of about
300 geographically distributed sites around the world. In particular all the results
presented in this study were obtained on the BC2S using the 484 MR images
at our disposal. the run-time reduction with the grid implementation allowed to
produce results in a reasonable time with respect to the application execution as
a sequential process on limited resources. The advantages of the grid execution
are evident since we obtained the 90% of the analysis of 484 images after less
than 16 hours.

4 Results and Conclusion

We compute our estimates of the performance metrics (ACC, AUC) for 5-fold
cross validation extracting random the test set. Results showed that our method
performs very good in discriminating the three classes (CTRL, MCI, and AD),
in line with those of literature, with an overall accuracy of 0.8090 on the entire
dataset (D), whereas for the 30 subjects downloaded from MICCAI (Ds), we
obtained an accuracy of 0.7333. In table 2 and table 3 we report the confusion
matrices for both the datasets.

Pred. CTRL|Pred. MCI|Pred. AD

CTRL 95 9 4
MCI 15 80 10
AD 5 12 58

Table 2. Confusion matrix for the classification of the entire dataset.

Moreover, in Fig.1, and Fig.2 are reported the ROC curves for the three
classes, for both the datasets. Also AUC scores are reported.

3 http://www.recas-pon.ba.infn.it
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Pred. CTRL|Pred. MCI|Pred. AD

CTRL 10 1 1
MCI 3 5 1
AD 0 2 7

Table 3. Confusion matrix for the classification of the dataset Dsg.
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Fig. 2. Roc curves on Dsg.



The proposed fully automated approach may be suitable for large-scale re-
search studies, in the first instance on Alzheimers disease, where the hippocampal
volume and morphological changes are important biomarkers, potentially also on
other brain disorders in which atrophy and structural brain changes plays a rel-
evant pathogenetic role.
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