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Abstract. We trained a multi-class support vector machine (SVM) with
probabilistic outputs on a large, publicly available sample (n = 1429) of
healthy controls, individuals with mild cognitive impairment (MCI), and
patients with probable Alzheimer’s disease (AD). The test performance
on a small validation set (n = 30) was similar to the cross-validation
performance of the training set. Average area under the curve was 0.84
for the validation and 0.79 for the training set. The model was then
applied to the test set (n = 354) of which no labels were known and the
predictions were submitted to the CADDementia Challange.
The method required one hour computation time on a single CPU per
subject, and almost no manual intervention.

1 Introduction

Diagnosis of dementia is an important task in clinical routine. In vivo brain imag-
ing supplements clinical assessments by providing information about structure
and function and can be used for assisting the diagnosis using automated ma-
chine learning methods [11, 15]. In a direct comparison, an automated method
for diagnosing Alzheimer’s disease (AD) performed as well as or better than
clinicians [12]. In a previous study, that we conducted with four different data
sets using functional and structural MRI markers, the structural markers were as
sensitive as functional imaging markers in diagnosing pre-symptomatic Hunting-
ton’s disease [2], despite the fact that functional dysfunction precedes structural
degeneration in the central nervous system [10]. A direct comparison of different
automated methods for diagnosing AD based on structural MRI was conducted
by Cuingnet et al. [6]. The data used for the study was acquired on multiple cen-
ters for the Alzheimer’s Disease Neuroimaging Initiative (ADNI). One of the best
performing methods [13] used features similar to those in voxel-based morphom-
etry (VBM) [4]. We showed in multiple studies that the typical pre-processing



for VBM studies leads to systematic differences between scanners, but at the
same time, the extracted data was sufficiently robust to classify the presence of
a disease across sites, and acquisition protocols [13, 1, 14, 20, 3]. Due to the high
performance in previous study and robustness in different scenarios, VBM fea-
tures were selected as the means of classification. In order to increase sensitivity
and specificity, we applied data driven feature selection. Further, we aimed to
reduce confounding effects of age, head size, and sex.

2 Materials

2.1 Test Data

The test data was provided through the web site on the challenge on Computer-
Aided Diagnosis of Dementia (CADDementia) based on structural MRI data1.
CADDementia provided T1 weighted MRI along with age and sex as basic de-
mographic covariates. Data was acquired on three different scanners with five
different scanning sequences. The 354 subjects included in the study were clas-
sified in three groups; Healthy controls (HC), individuals with mild cognitive
impairment (MCI), and patients with AD. Patients labeled AD met the clin-
ical criteria for probable AD according to [16, 17]. Patients labeled MCI met
the criteria stipulated by [19]. One site used three different protocols; the other
two sites acquired the images using a single protocol. No diagnostic labels were
provided for the test data. Demographic data are shown on Table 1.

Table 1. Demographic data of the training, validation, and test set. HC: healthy
controls, MCI: mild cognitive impairment, AD: Alzheimer’s disease, F: female, M: male,
N.A.: information was not available

HC/MCI/AD F/M age [years]

ADNI 371/631/287 582/707 73.7±7.3
AIBL 79/31/30 80/60 74.5±7.4
CADDementia (validation) 12/9/9 13/17 65.2±7.0
CADDementia (test) N.A. 141/213 65.1±7.8

2.2 Validation Data

The validation dataset - also provided by the CADDementia Challenge - con-
sisted of thirty examples that also included class labels. Acquisition sites, pa-
rameters, and inclusion criteria were identical to the test data set.

1 http://caddementia.grand-challenge.org



2.3 Training Data

Structural MRI from baseline scans of the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) database2 [18] and from the Australian Imaging, Biomarker
& Lifestyle Flagship Study of Ageing (AIBL) database3 [8] were used. A goal
of ADNI has been to test whether serial magnetic resonance imaging, positron
emission tomography, other biological markers, and clinical and neuropsycholog-
ical assessment can be combined to measure the progression of MCI and early
AD. The AIBL database consists of several hundred structural scans that were
acquired on a single scanner. The study methodology has been reported previ-
ously [8]. We used baseline images from about 1429 subjects from AIBL and
ADNI. Images from the ADNI were removed if either the subject converted or
reverted during the course of the study. A demographic summary of the training
data can be found on Table 1.

Four our study, individuals in the training data set were classified in AD,
mild cognitive impairment (MCI), and healthy controls (HC).

3 Methods

3.1 Image pre-processing

The goal of image pre-processing was to obtain the input data for the automated
classification process. We extracted very high-dimensional GM intensity maps
for voxel-wise classification. Pre-processing of images was identical for train-
ing, validation, and test sets. Initially, the raw images were coregistered to the
canonical T1 template in SPM8 using a rigid registration implemented in the
SPM8 toolbox4. Then, using VBM8 toolbox5, we computed voxel-wise densities
of gray matter (GM) that were normalized to a reference space. Maps were sub-
sequently modulated by the determinant of the Jacobian of the local deformation
field. The modulation thus accounted for non-linear volume changes, but ignored
global (affine) volume changes. If multiple baseline images were available for a
subject, the mean of all available GM maps was taken. The initial registration
failed in some cases, which required manually registering the images to the tem-
plate. Thus, the employed method was semi automatic, although the manual
intervention was minor and did not require expert knowledge. The image pre-
processing per image took about one hour on a single core. Computation of one
column of the kernel matrix, which included computing pair-wise dot-products
between GM maps, took a couple of seconds. Manual registration (required in
approximately 10% of the test cases) took a few minutes per subject.

2 http://adni.loni.usc.edu
3 http://www.aibl.csiro.au
4 http://www.fil.ion.ucl.ac.uk/spm/software/spm8/
5 http://dbm.neuro.uni-jena.de/vbm



3.2 Feature Selection

In previous studies [12, 3, 14, 2, 1] we used a linear SVM in combination with
high-dimensional GM density maps including either all voxels or selecting voxels
a priori. Here, we used the linear binary classifier with a hard margin in order to
make the feature selection. Using 20% of the training data, one model for every
binary classification was trained. For each classifier, using the method proposed
by Gaonkar and Davatzikos [9] the p-values of the weights were computed and
features were included only if the p-value was lower than a certain threshold. The
threshold was 0.0001, 0.001, and 0.01 for ADvsHC, MCIvsNC, and ADvsMCI,
respectively. The kernel computed from the subset of significant features was
then used for the multi-class classification as explained in the next subsection.
Computation for training a model and performing feature selection required
about one minute of computation time, provided that the kernel matrix was
computed and all required data was in the memory.

3.3 Nuisance Correction

We used kernel regression to correct for confounding effects such as age, sex
and total intracranial volume to remove confounds from the linear dot-product
matrix of the gray matter values. Computation time for this step was smaller
than one second and thus was negligible compared to the time that was required
for the pre-processing. Given the kernel matrix K ∈ RN×N , the detrended kernel
K̃ was computed as

K̃ = RKRT , R = I−X
(
XTX

)−1
XT , (1)

where I was the identity matrix and X ∈ RN×3 the design matrix of N subjects
coding sex, age, and total intra-cranial volume. This method was the same as
previously proposed by Dukart et al. [7], but uses sex and TIV as additional
covariate and performs the detrending in kernel space.

Unlike in previous work [14], we did not correct for scanner/sequence for this
study, since not enough training data was available. Specifically, only about four
images of healthy controls per scanner/sequence were available in the validation
set. Of note, the age distribution in the training and test sets differed significantly
(p < 0.05, Student’s t-test). Since age, and AD both are associated with neuronal
degeneration in partially overlapping regions, we expected a bias due to age.
Specifically, we expected a lower sensitivity, because AD progression is positively
correlated with age [7]. Thus younger subjects are less likely to be classified as
AD.

3.4 Multi-class Classification

Multi-class linear classification in the one-versus-one setting is not well suited
for classification of controls, MCI, and AD, because MCI is in between controls
and MCI. We therefore employed a non-linear SVM with radial basis function



k(xi,xj) = exp (−γ||xi − xj ||). For classification, we used one versus all sup-
port vector machine (SVM) as implemented in libsvm [5] with the option for
probabilistic multi-class outputs [21]. The SVM parameters were set manually
to C = 2 and γ = 0.0002. These combination achieved similar performance on
the training and validation set (Figure 1). The performance on the validation
set was obtained by using the predictions by the model trained using all train-
ing examples that were not used to estimate p-values for feature selection. The
performance on the training set was computed in a ten fold cross-validation.

4 Results

Classification results were obtained for the training set (n = 1429) by cross-
validation, and on the validation set (n = 30) by applying the model trained
on the entire training set. Test accuracy of binary classification of the valida-
tion (training) set of HC, MCI, and AD versus rest was 41.7 % (62.1 %), 66.7 %
(64.8 %), and 77.8 % (70.2 %), respectively. Discriminability of the validation set
in terms of AUC was highest for AD (96.8%), intermediate for HC (84.7%),
and lowest for MCI (67.7%), as shown in Figure 1. The same order was ob-
served in training set as well. Predictions on the test set were submitted to the
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Fig. 1. Performance curves of training and validation set.

CADDementia committee.

5 Discussion

Training and test/validation sets differed in scanner hardware, acquisition pa-
rameters and inclusion criteria. Furthermore, the populations of controls and



patients were possibly more distinct in the training set, as conversion and rever-
sion lead to exclusion. In addition, the test population was significantly younger
than the test population. The correction for age effects and multi-centric studies
conducted previously [3, 14], suggest that the most relevant factor that could lead
to a discrepancy in cross-validated training performance versus test performance
are the class-wise difference in population.

As expected, classification performance of the three classes HC, and AD was
well above chance on the train and validation set. Discriminating MCI from the
rest was more certain. Binary classification of HC and AD subjects reached up
to 90 % accuracy. These results were obtained with an (almost fully) automated
processing pipeline, which required no expert knowledge in the classification
process.

One drawback of the presented methods is, that the classification process
used the same features for all classification tasks. Although MCI can be seen as
pre-state of AD, the optimally discriminative features between HC and MCI are
not necessarily the same as the optimally discriminative features between MCI
and AD or between HC and AD.

The SVM, as discriminative method, performed well in many similar classifi-
cation tasks that were evaluated by cross-validation. In the present setting, the
validation set remained entirely untouched. This reduced the risk of overfitting
the model. However, since the parameters were hand-tuned and picked in such a
way that the cross-validated performance on the training set was similar to the
validation performance, there was a risk of overfitting to the validation set. We
therefore expect a slightly lower performance on the test set.
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