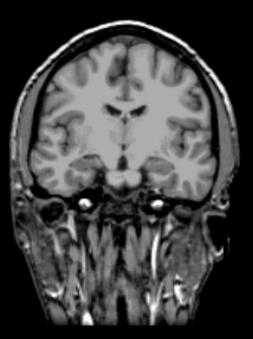
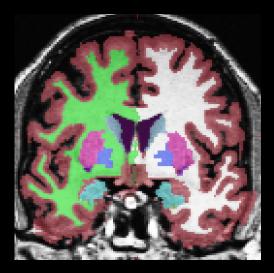
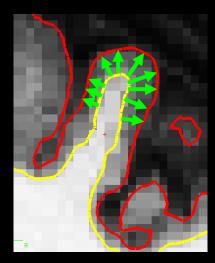


BrainPrint in the Computer-Aided Diagnosis of Alzheimer's Disease

Christian Wachinger, Kayhan Batmangelich, Polina Golland, Martin Reuter

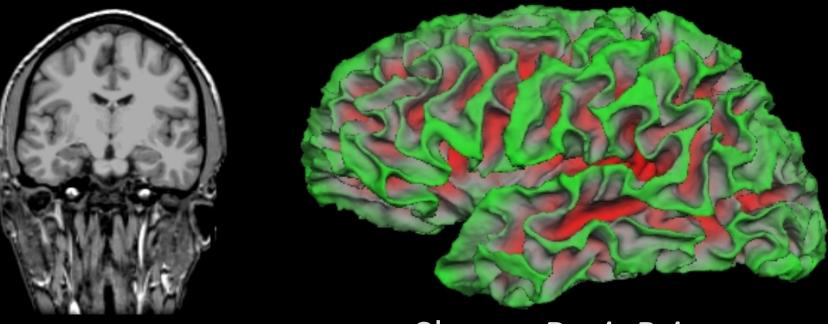

Massachusetts Institute of Technology


Harvard Medical School


Introduction

Classify MRI T1 scans in AD / MCI / HC

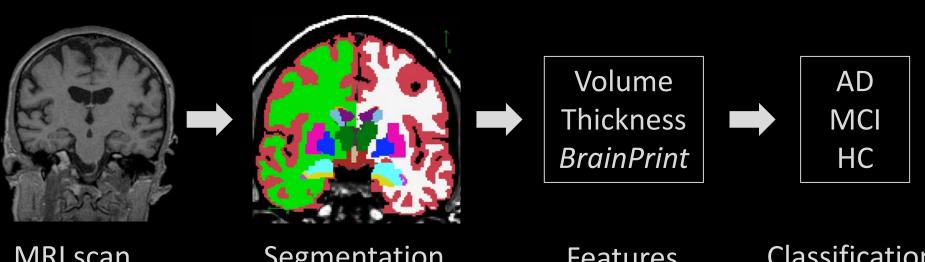
Volume



Thickness

Source: FreeSurfer

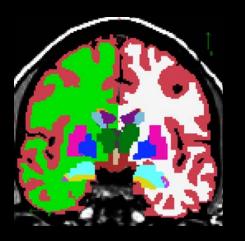
Introduction

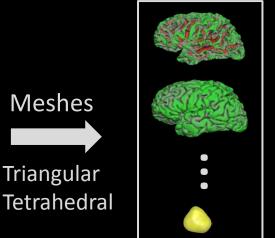

Classify MRI T1 scans in AD / MCI / HC

Shape: *BrainPrint*

BrainPrint: Identifying Subjects by their Brain, Wachinger et al., MICCAI 2014

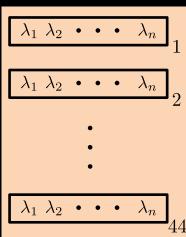
Overview

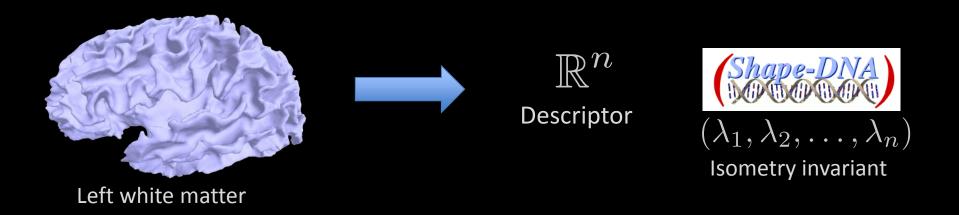

Segmentation


Features

Classification

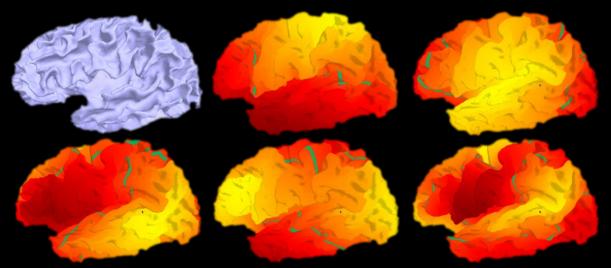
BrainPrint


- Representation of brain morphology
 - Holistic: cortical and subcortical structures
 - Compact: <9kB per subject</p>
 - Discriminative: 99.9% accuracy in subject identification (MICCAI, 2014)



BrainPrint

Shape Descriptor


Helmholtz equation (Laplace-Beltrami Eigenvalue Problem):

$$\Delta f = -\lambda f$$

Solution: Eigenfunctions f_i with corresponding family of eigenvalues (**Spectrum**):

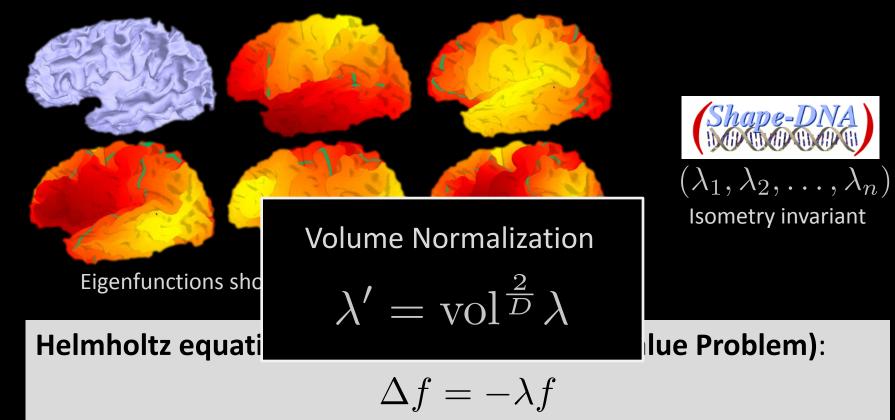
$$0 \leq \lambda_1 \leq \lambda_2 \leq \ldots$$

Shape Descriptor

Isometry invariant

Eigenfunctions show natural vibrations of shape

Helmholtz equation (Laplace-Beltrami Eigenvalue Problem):

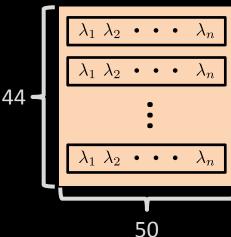

$$\Delta f = -\lambda f$$

Solution: Eigenfunctions f_i with corresponding family of eigenvalues (**Spectrum**):

$$0 \leq \lambda_1 \leq \lambda_2 \leq \ldots$$

Reuter, et al., CAD, 2006

Shape Descriptor


Solution: Eigenfunctions f_i with corresponding family of eigenvalues (**Spectrum**):

$$0 \leq \lambda_1 \leq \lambda_2 \leq \dots$$

Features from BrainPrint

- 44 Structures
 - 36 subcortical (triangular)
 - 4 cortical (triangular)
 - 4 cortical (tetrahedral)
- 2200 shape variables for 50 eigenvalues
- Reduce the number by computing
 - Lateral shape distances (asymmetry)
 - Principal component

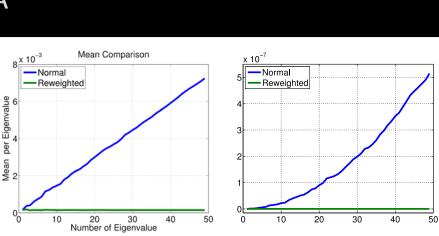
Computations with BrainPrint

- Asymptotically linear growth of eigenvalues
- Quadratic growth of variances causes domination by higher eigenvalues
- Balance influence:
 - Mahalanobis distance for lateral distances

$$d = \| \boldsymbol{\lambda}^{\text{left}} - \boldsymbol{\lambda}^{\text{right}} \|_{\Sigma}$$

Linear reweighting for PCA

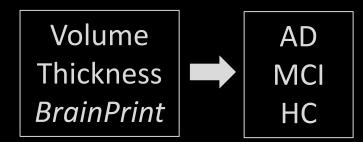
$$\hat{\lambda}_i = \frac{\lambda_i}{i}$$


$\mathbf{BrainPrint}$

 $\lambda_1 \lambda_2$

 $\lambda_1 \ \lambda_2$

50


44 -

 $\boldsymbol{\lambda} = | \lambda_1 \lambda_2 \cdot \cdot \cdot \lambda_n |$

Alzheimer's Classification

- Generalized linear model (GLM) with multinomial distribution and logit link function
- 163 features per subject
 - 39 volumetric
 - 70 thickness
 - 10 lateral shape distances
 - 44 PCs of shape
- Normalize volumetric measures by ICV
- Linear regression w.r.t. age
- After normalization age and sex are not used

- 1. Manual
- 2. GLM stepwise search
- 3. Elastic net

- 1. Manual
- 2. GLM stepwise search
- 3. Elastic net

- Volume:
 - Hippocampus
 - Amygdala
- Thickness:
 - Entorhinal cortex
 - Middle temporal lobe
 - Parahippocampal gyrus
 - Banks of the superior temporal sulcus
- Lateral shape distances:
 - Hippocampus
 - Amygdala
 - Ventricles

1. Manual

2. GLM stepwise search

Minimize Akaike information criterion

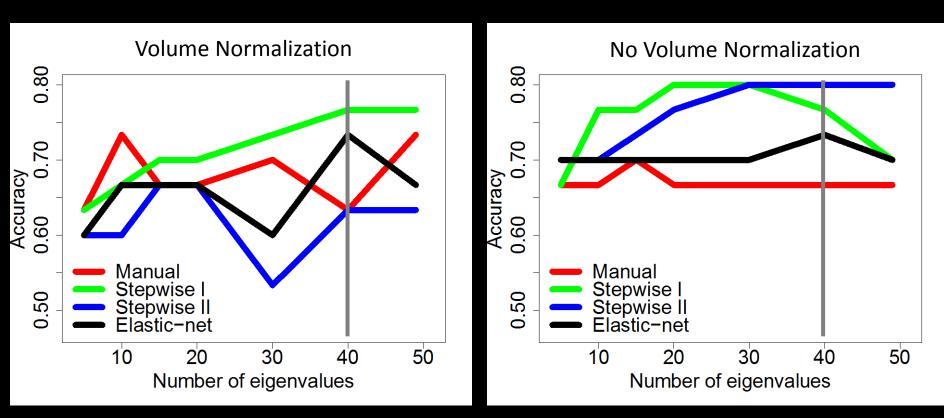
3. Elastic net

- 1. Manual
- 2. GLM stepwise search

3. Elastic net

$$P_{\alpha}(\beta) = (1 - \alpha)\frac{1}{2} \|\beta\|_{2}^{2} + \alpha \|\beta\|_{1}$$

Data


- ADNI1 baseline scans (FreeSurfer v5.1)
- Challenge scans (FreeSurfer v5.3)

	Subjects	Diagnosis	Gender		Age quantiles
		(CN/MCI/AD)	Male	Female	(1st/2nd/3rd)
ADNI	751	(213/364/174)	437(58%)	314(42%)	(71.1)75.3/79.8)
Challenge-Validation	30	(12/9/9)	17(57%)	13(43%)	(59.3/65.0/68.0)
Challenge-Test	354		213(60%)	141(40%)	(59.0/64.0(71.0)

- Notable age difference between datasets
- Average processing times (fully automatic): 16.8h (FreeSurfer) + 0.6h (BrainPrint) + 0.0h (classification)

Results

- Training on ADNI, testing on Challenge-Validation
- Determine number of eigenvalues

Results

- Training on ADNI, testing on Challenge-Validation
- Consistency for testing on Challenge-Test when adding Challenge-Validation to training

Model	Norm	Accuracy	TPF-CN	TPF-MCI	TPF-AD	AUC	CON
Manual Stepwise I Stepwise II Elastic-net	No	$\begin{array}{c} 67 \ (43\text{-}80) \\ 77 \ (53\text{-}87) \\ 80 \ (60\text{-}90) \\ 73 \ (53\text{-}83) \end{array}$	$\begin{array}{c} 83 \ (50\text{-}100) \\ 83 \ (50\text{-}100) \\ 92 \ (55\text{-}100) \\ 83 \ (50\text{-}100) \end{array}$	$\begin{array}{c} 67 \ (20\text{-}89) \\ 67 \ (20\text{-}89) \\ 56 \ (20\text{-}86) \\ 56 \ (20\text{-}86) \end{array}$	44 (10-80) 78 (33-100) 89 (50-100) 78 (33-100)	$78 (63-90) \\88 (73-96) \\84 (69-95) \\84 (69-93)$	$97 \\ 95 \\ 91 \\ 92$
Manual Stepwise I Stepwise II Elastic-net	Yes	$\begin{array}{c} 63 \ (40\text{-}77) \\ 77 \ (53\text{-}87) \\ 63 \ (40\text{-}77) \\ 73 \ (53\text{-}83) \end{array}$	$\begin{array}{c} 75 \ (42 - 93) \\ 83 \ (50 - 100) \\ 92 \ (55 - 100) \\ 83 \ (50 - 100) \end{array}$	67 (20-89) 78 (33-100) 33 (0-70) 44 (13-78)	$\begin{array}{c} 44 \ (10\text{-}80) \\ 67 \ (17\text{-}89) \\ 56 \ (11\text{-}83) \\ 89 \ (50\text{-}100) \end{array}$	$\begin{array}{c} 79 \ (63-91) \\ 89 \ (76-96) \\ 77 \ (65-88) \\ 86 \ (73-95) \end{array}$	97 98 91 93

Conclusions

- *BrainPrint* for Alzheimer's classification
- Augmenting volume and thickness measures with shape features
- Three approaches for model selection

Thank you!

Supported by Humboldt, P41-RR014075, P41-EB015896, U54-EB005149, P41-EB015902