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Abstract. Neurodegenerative association with structural changes of the
brain has been widely investigated gaining profound knowledge on spe-
cific aspects of the healthy and diseased brain. Medial temporal lobe atro-
phy and, in particular, the hippocampal atrophy are important biomark-
ers for the Alzheimer’s disease. In this paper we describe how MRI brain
scans can be processed and analyzed, in a fully automated framework,
to segment relevant anatomical structures, extract morphometric and
statistical features and perform an accurate clinical classification on the
basis of anatomical and statistical features. We trained an artificial neu-
ral on a population consisting of 288 subjects to discriminate normal
control subjects (NC), from those affected by Alzheimer’s disease (AD)
and mild cognitive impairment (MCI) with a one versus one strategy.
Performances were validated with k-fold procedure, NC-AD were dis-
criminated with accuracy ACC (NC-AD) = 0.91 while the overall accu-
racy ACC (NC-MCI-AD) reached the 0.81 value.

1 Introduction

Neuroscience is generating exponentially growing volumes of data and knowledge
on specific aspects of the healthy and diseased brain, in different species, at
different ages. However, there is no effective strategy to experimentally map the
brain across all its levels and functions, yet. A proof of interest in the field is the
recent funding of worldwide initiatives, such as the Human Brain Project 4 and
the Human Connectome Project °1.

** Data used in preparation of this article were obtained from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investiga-
tors within the ADNI contributed to the design and implementation of ADNT and /or
provided data but did not participate in analysis or writing of this report. A com-
plete listing of ADNI investigators can be found at: http ://adni.loni.usc.edu/wp —
content /uploads/how_to_apply /ADNI_Acknowledgement_List.pdf

4 www.humanbrainproject.eu
® www.humanconnectomeproject.org



Medical image computing raises new challenges related to the scale and com-
plexity of the required analyses. For example, magnetic resonance imaging (MRI)
of the brain plays a fundamental role for detection of neurodegeneration. The
manual segmentation on MRI has been so far considered the only available strat-
egy to accurately access reliable structural biomarkers and therefore to achieve
a sound quantitative clinical discrimination. Nevertheless, manual segmentation
is a time-consuming task nor it can manage the intrinsic human intra-rater
variability, this is why automated processing pipelines are needed as diagnosis
support systems.

In the present paper a novel fully automated processing workflow is described.
It consists of three main steps. Firstly the pre-processing, an automated rigid
registration and histogram based equalization for spatial and intensity normal-
ization. Then, a volume of interest (VOI) extraction is performed; this VOI
individuates a gross region containing the left and right hippocampi, from this
region important features as the hippocampal volume or its thickness are calcu-
lated. Finally, the classification (NC - MCI - AD) is obtained with an automated
artificial neural network.

2 Materials

The goal of this work is to provide a fully automated and reliable diagnosis sup-
port system to discriminate NC - MCI - AD. The CADDementia challenge aims
to compare several methods and protocols to unveil, on the basis of a common
test set whether significant differences exist among the various algorithms. Ac-
cording to this a standardized evaluation framework is set up, consisting of 384
multi-center scans. The participating centers are: Erasmus MC (EMC), Rotter-
dam, the Netherlands; VU University Medical Center (VUmc), Amsterdam, the
Netherlands; University of Porto / Hospital de Sao Joao (UP), Porto, Portugal
This data set contains structural MRI (T1w) scans of subjects with the diagno-
sis of probable Alzheimer’s disease (AD), mild cognitive impairment (MCI) and
participants without a dementia syndrome (controls). In addition to the MR
scans, demographic information (age, gender) and information on which data
are from the same institute is included.

To reach this goal 30 MRI brain scan are provided by the MICCAI CADDe-
mentia challenge (http://caddementia.grand-challenge.org) for training. Never-
theless, an increased basis of knowledge should help classification to build more
generalized model and this is why a second dataset consisting of 258 MRI brain
scans shared by the Alzheimer’s Disease Neurolmaging Initiative (ADNI) was
used. The two training databases used are described with demographics given
in table 1.

3 Methods

In this study a fully automated pattern recognition system for accurate and
reproducible segmentation of the hippocampus and the peri-hippocampal region



Data |[Size| Age | M/F Subjects

ADNT [258 |60 - 96{144/114|96 NC - 96 MCI - 66 AD
MICCAI| 30 |54 - 80| 17/13 | 12 NC - 9 MCI -9 AD
Table 1. Data demographics. Group size, range age (years) and resolution of the two
clinical datasets, containing normal control (NC) subjects, Alzheimer’s Disease (AD)
and mild cognitive impairment (MCI) patients.

in structural Magnetic Resonance Imaging (MRI) was used. This procedure,
described in detail in our previous works in [1,2,3,4], is schematically shown in
figure 1.
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Fig. 1. The figure represents the overall processing pipeline. The MRI scans are
processed independetly by FreeSurfer and an automated segmentation pipeline
hippocampus-focused. The calculated features are used to train an artificial neural
network in a 5-fold cross validation frameowrk, then finally classification is performed.

The system consisted of three processing levels: (a) MRI brain scans were
linearly registered to the standard MNI152 template and an automated point
distribution shape analysis method was used to define the peri-hippocampal
region. (b) Feature extraction: the peri-hippocampal VOI was statistically ana-
lyzed; gray level distribution features such as means, standard deviations, kur-
tosis and skewness were calculated. Moreover, other morphometric hippocampal



based features such as the whole volume, the thickness, or local geometric fea-
tures were calculated. In addition other features were calculated with a publicly
available brain segmentation package FreeSurfer v.5.1 6 [5] for an overall amount
of 248 features. (c) Subject classification: a back propagation neural network was
used to classify examples as NC, MCI and AD. An unsupervised filter was used
to explore the feature space and determine correlations and linear dependences,
in this way a subsample of about 150 features was determined. Features were
normalized with the intra-cranial volume and finally normalized then, a one
versus all strategy was adopted for training the network.

The network architecture was kept as simple as possible to avoid over-training
issues, just one hidden layer with 10 neurons was used and a regularized cost
function was adopted. To improve the generalization of the trained model a 5-fold
strategy was used, in addition a random sampling of 50 features for every cross-
validation round was performed. We repeated this procedure for a hundred times,
thus obtaining 1500 trained networks. For every cross-validation round a 288 x 3
score matrix is obtained. Training performances are obtained by averaging the
score matrix for every cross-validation and then averaging the class probabilities
obtained from the different classifiers, in fact according to the one versus we
trained a NC vs AD classifier, a NC vs MCI classifier and an AD vs MCI classifier,
thus for example for NC subjects two distinct probabilities were given for each
cross-validation step.

3.1 Computational infrastructure

The analyses presented in this paper were developed in MATLAB framework
and required substantial computational resources. The previously described au-
tomated processing pipeline required an overall processing time of about 13
hours for subject, this processing time was almost entirely due to FreeSurfer. In
fact, the processing time required to extract the hippocampal and the statistical
features did not exceed one hour per subject. Therefore the use of dedicated
workflow manager such as the LONI pipeline processing environment [6][7] was
used: a user-friendly and efficient software for complex data analyses, available
at http://pipeline.loni.ucla.edu and an adequate distributed infrastructure was
of fundamental importance.

The analyses were carried out using the local computer farm BC2S 7: a
distributed computing infrastructure consisting of about 5000 CPU and allowing
up to 1,8 PB storage. A further study for grid deployment was also performed,
within the aim of creating a pipeline tool suitable for large clinical trials. It was
carried out on the European Grid Infrastructure (EGI) which consists of about
300 geographically distributed sites around the world. The run-time reduction
with the grid implementation allowed to produce results in a reasonable time
with respect to the application execution as a sequential process on limited
resources. The advantages of the grid execution were evident since we obtained
the 90% of the analysis of 642 images after less than 16 hours.

5 freesurfer.nmr.mgh.harvard.edu
" http://www.recas-pon.ba.infn.it



4 Results

The overall training results showed a significant discrimination among the three
populations. Performances were measured in terms of accuracy (ACC) and area
under the receiver operating characteristic (AUC). Figure 7?7 shows the overall
training results.
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Fig. 2. The figure represents the receiver operating characteristics of the three classes:
NC (blue), MCI (green) and AD (red) for both the overall training set (on the left)
and the 30 MICCAI images (on the right). AUC is also reported for all of them, it can
be seen how NC and AD are recognized slightly better than MCI.

Performances on the reduced training set (the MICCAI data) resulted sig-
nificantly lower, with an average accuracy ACC = 0.67 £ 0.3. However the data
size does not allow to draw statistically significant conclusions 3.
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Fig. 3. The figure shows the confusion matrix relative to the overall training (on the
left) and the 30 MICCALI training images (on the right). Classes 1-2-3 are respectively
the NC, the MCI and the AD classes.

The networked already trained were then used to obtain the test predictions.
To improve generalization, we randomly sampled 300 classifiers from the 1500



already trained (100 for each type: NC-AD, NC-MCI and AD-MCT) and obtained
for test example a prediction to be NC, MCI and AD. As previously explained
for training, the average class probability was reported as the final classification
score.

5 Discussion and Conclusion

Accuracy and area under the curve results suggest the method is reliable, besides
being fully automated it can be adopted for large studies without suffering of
intra-rater variability nor requesting time-intensive manual work from experts.

Classification performances compare well state-of-the-art performances thus
suggesting the overall analysis workflow is reliable. The reduced number of fea-
tures used for classification also suggest the possibility to significantly improve
performances with the individuation of new features. The most important fea-
tures for classification resulted to be those correlated to temporal lobe and hip-
pocampal atrophy, on one hand this demonstrates that the volumes obtained by
the proposed workflow are reliable, on the other it should also suggest to explore
and investigate new features to improve the clinical discrimination.

Unsupervised approaches, such as deep learning networks, could be naturally
included in the proposed framework and will be investigated in future works. Be-
sides, those issues deriving from the computational burden yielded by FreeSurfer
should also be addressed, the most promising strategy, according to our results,
could be the individuation of statistical features which could substitute those
obtained by FreeSurfer.
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