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Abstract. Early identification of neuroanatomical changes deviating from the normal age-
related atrophy pattern has the potential to improve clinical outcomes through early treatment or 
prophylaxis. Especially the pathological cascade of Alzheimer’s disease (AD), the most common 
form of dementia, is widely linked to precocious and/or accelerated (brain) aging. 

This work presents a novel magnetic resonance imaging (MRI)-based biomarker that indicates 
discrepancies in individual brain aging. By employing automatic preprocessing of structural MR 
images as well as high-dimensional pattern recognition methods, this approach uses the 
distribution of normal brain-aging patterns to estimate the individual brain age of a given new 
subject. The difference between the estimated brain age and the chronological age gives an 
individual deviation score, with positive values indicating the degree of acceleration in cerebral 
atrophy, which is considered a risk factor for AD. Here, this deviation score is used to classify the 
subjects as NO, MCI, and AD. 
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1 Introduction 

The global prevalence of dementia is projected to rise sharply over the coming decades. By 2050, 1 
in 85 persons worldwide will be affected by Alzheimer’s disease (AD), the most common form of 
dementia (Brookmeyer et al. 2007). Manifold pathological changes begin to develop years or decades 
before the onset of cognitive decline (Jack et al. 2010), including premature changes in gene expression 
(Cao et al. 2010; Saetre et al. 2011), accelerated age-associated changes of the default mode network 
(Jones et al. 2011), and most obviously, abnormal changes in brain structures already at the mild 
cognitive impairment (MCI) stage (Driscoll et al. 2009; Spulber et al. 2010). Additionally, atrophic 
regions detected in AD patients were recently found to largely overlap with those regions showing a 
normal age-related decline in healthy control subjects (Dukart et al. 2011).  

Early detection and quantification of abnormal brain changes is important for the prospective 
identification and subsequent treatment of individuals at risk for cognitive decline and dementia. At 
some point in the AD disease course accelerated neurodegeneration takes place, preceding accelerated 
cognitive decline (Jack et al. 2010). Although brain atrophy in general is not specific for AD, MRI-
detected atrophy was found to retain the closest relationship with cognitive decline (Jack et al. 2010; 
Vemuri et al. 2009a, b) suggesting a crucial role for structural MRI in predicting future conversion to 
AD (Frisoni et al. 2010; Jack et al. 2010). 

Assuming AD to be preceded by precocious and/or accelerated brain aging (Bartzokis 2011; 
Driscoll et al. 2009; Spulber et al. 2010), a straightforward and efficient solution is to model healthy 
aging on the one hand, and to identify accelerated (thus pathological) brain atrophy on the other. 
Consequently, in order to recognize faster brain atrophy, a model of healthy and normal brain aging is 
needed. A straightforward and efficient solution is to model age regression based on normal brain 
anatomy, such that an individual’s brain age can be accurately estimated from his/her brain scan alone. 

The approach presented here takes into account the widespread but sequential age-related brain 
tissue loss. Based on single time-point structural MRI the complex, multidimensional aging patterns 
across the whole brain are aggregated to one single value, i.e. the estimated brain age. Consequently, 
although using only a standard MRI scan, the deviation in brain atrophy from normal brain aging can 
be directly quantified.  



2 Methods 

2.1 Subjects/Database 

To train the age estimation framework, MRI data from the publicly accessible IXI cohort 
(http://www.brain-development.org) were used. In September 2011, the IXI database contained T1-
weighted images from 561 healthy subjects [250 male] aged 20-86 years [mean (SD) = 48.6 (16.5) 
years], which were collected on three different scanners (Philips 1.5T, General Electric 1.5T, Philips 
3T). The distributions of age and gender within the training sample are shown in Figure 1. Table 1 
shows the characteristics of the CAD Dementia training and test samples. 

 

 
Figure 1: Age distribution in the male (left) and female (right) IXI sample used for modeling normal brain aging. 

Table 1: Characteristics of the subjects in the CAD Dementia training and test samples. 

CAD Dementia train sample test sample 
 male female male female 
No. subjects 17 13 213 141 
Age mean (SD) 64.2 (6.7) 66.5 (7.4) 65.7 (7.4) 64.2 (8.3) 
Age range 54 – 79 57 – 80 49 – 88 46-88 
No. NO subjects 9 3 - - 
No. MCI subjects 5 4 - - 
No. AD subjects 3 6 - - 

2.2 Preprocessing of MRI data and data reduction 

Preprocessing of the T1-weighted images was done using the SPM8 package 
(http://www.fil.ion.ucl.ac.uk/spm) and the VBM8 toolbox (http://dbm.neuro.uni-jena.de), running 
under MATLAB. All T1-weighted images were corrected for bias-field inhomogeneities, then spatially 
normalized and segmented into gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF) 
within the same generative model (Ashburner and Friston 2005). The segmentation procedure was 
extended by accounting for partial volume effects (Tohka et al. 2004), by applying adaptive maximum 
a posteriori estimations (Rajapakse et al. 1997), and by using a hidden Markov random field model 
(Cuadra et al. 2005; Gaser 2009). The images were processed with affine registration and smoothed 
with (i) 4-mm full-width-at-half-maximum (FWHW) or (ii) 8-mm FWHW smoothing kernels. Spatial 
resolution was set to (i) 4 mm or (ii) 8 mm, respectively. For further data reduction, principal 
component analysis (PCA) was performed on the training sample with subsequently applying the 
estimated transformation parameters to the test sample. PCA was done using the ‘Matlab Toolbox for 
Dimensionality Reduction’ (http://ict.ewi.tudelft.nl/~lvandermaaten/Home.html).  



2.3 Relevance vector regression (RVR) 

To capture the complex, multidimensional aging pattern across the whole brain, the brain age 
estimation framework utilizes relevance vector regression (RVR; Tipping, 2001). Relevance vector 
machines (RVM) were introduced as a Bayesian alternative to support vector machines (SVM) for 
obtaining sparse solutions to pattern recognition tasks. The main idea behind SVMs is the 
transformation of training data from input space into high-dimensional space – the feature space – via a 
mapping function Φ (Bennett and Campbell 2003; Schölkopf and Smola 2002). For the purpose of 
classification, the hyperplane that best separates the groups is computed within this feature space, 
resulting in a nonlinear decision boundary within the input space. The best separating hyperplane is 
found by maximizing the margin between the two groups. The data points lying on the margin 
boundaries are called support vectors since only these are used to specify the optimal separating 
hyperplane. For the case of real-valued output functions (rather than just binary outputs as used in 
classification), the SV algorithm was generalized to regression estimation (Bennett and Campbell 
2003; Schölkopf and Smola 2002). In support vector regression (SVR), a function has to be found that 
fits as many data points as possible. Analogous to the margin in classification, the regression line is 
surrounded by a tube. Data points lying within that tube do not influence the course of the regression 
line. Data points lying on the edge or outside that tube are called support vectors.  

In contrast to the support vectors in SVM, the relevance vectors in RVM represent the prototypical 
examples within the specified classification or regression task, instead of solely representing separating 
attributes. Furthermore, severe overfitting associated with the maximum likelihood estimation of the 
model parameters was avoided by imposing an explicit zero-mean Gaussian prior (Ghosh and 
Mujumdar 2008; Zheng et al. 2008). This prior is a characteristic feature of the RVM, and its use 
results in a vector of independent hyperparameters that reduces the data set (Faul and Tipping 2002; 
Tipping 2000; Tipping 2001; Tipping and Faul 2003). Therefore, in most cases the number of 
relevance vectors is much smaller than the number of support vectors. Furthermore, in SVR additional 
parameters have to be determined or statistically optimized (e.g. with cross-validation loops) in order to 
control for model complexity and model fit. To control the behavior of the RVR, only the type of 
kernel has to be chosen, whereas all other parameters are automatically estimated by the learning 
procedure itself. More details can be found in (Bishop 2006; Schölkopf and Smola 2002; Tipping 
2000). 

2.4 Brain age estimation framework 

The brain age estimation framework utilizes RVR to capture the complex, multidimensional aging 
pattern across the whole brain and to subsequently estimate individual brain ages based on T1-
weighted images. As suggested in Franke et al. (2010), the kernel was chosen to be a polynomial of 
degree 1, since age estimation accuracy was shown to not improve when choosing non-linear kernels. 
Thus, parameter optimization during the training procedure was not necessary.  

In general, the model is trained with preprocessed whole brain structural MRI data (as described in 
2.2) of the training sample, resulting in a complex model of healthy brain aging (Figure 2A, left panel). 
Put in other words, the algorithm uses those whole-brain MRI data from the training sample that 
represent the prototypical examples within the specified regression task (i.e., healthy brain aging). 
Additionally, voxel-specific weights are calculated that represent the importance of each voxel within 
the specified regression task (i.e., healthy brain aging). For an illustration of the most important 
features (i.e., the importance of voxel locations for regression with age) that were used by the RVR to 
model normal brain aging and more detailed information please refer to Franke et al. (2010).  

Subsequently, the brain age of a test subject can be estimated using the individual tissue-classified 
MRI data, aggregating the complex, multidimensional aging pattern across the whole brain into one 
single value (Figure 2A, right panel). In other words, all the voxels of the test subject’s MRI data are 
weighted by applying the voxel-specific weighting matrix. Then, the brain age is calculated by 
applying the regression pattern of healthy brain aging and aggregating all voxel-wise information 
across the whole brain. The difference between estimated brain age and the true chronological age will 
reveal an individual deviation score. Consequently, this deviation score directly quantifies the amount 
of acceleration or deceleration in individual brain aging (Figure 2B). For example, if a 70 years old 
individual has a deviation score of +5 years, this means that this individual shows the typical atrophy 
pattern of a 75 years old individual. To compute the final age regression model as well as to predict the 



individual brain ages, we used the freely available toolbox “The Spider” 
(http://www.kyb.mpg.de/bs/people/spider/main.html).  

 
Figure 2. (A) The model of healthy brain aging is trained with the chronological age and preprocessed structural 

MRI data of a training sample (left; with an exemplary illustration of the most important voxel locations that were 
used by the age regression model). Subsequently, the individual brain ages of previously unseen test subjects are 

estimated, based on their MRI data (blue; picture modified from Schölkopf and Smola (2002)). (B) The difference 
between the estimated and chronological age results in the deviation (i.e., BrainAGE) score. Consequently, 

positive deviation scores indicate accelerated brain aging. (Image reproduced from Franke et al. (2012), with 
permission from Hogrefe Publishing, Bern). 

The age estimation model was separately trained on male and female subjects in the IXI training 
sample. Furthermore it was trained using (i) preprocessed GM images, (ii) preprocessed WM images, 
and (iii) the linear combination of preprocessed GM and WM images. Subsequently, the brain ages of 
the subjects in the CAD Dementia training and test samples were estimated based on their non-
uniformity corrected (nuc) MRI data. The difference between the estimated and the true age resulted in 
(i) GM, (ii) WM, and (iii) GMWM deviation scores, respectively. Sample-specific set-offs and slopes 
were corrected for the whole CAD Dementia sample using linear regression. The whole brain age 
estimation framework works automatically. All data preprocessing, model training, and brain age 
estimation was done using MATLAB. 

2.5 Classification based on brain age estimation 

Classification of the CAD Dementia subjects is based on the individual deviation scores. To explore 
the best classification accuracies in the CAD Dementia training sample, the brain age estimation model 
was run with all combinations of parameter variation during preprocessing (i.e. 4 mm & 8 mm FWHM 
smoothing kernel) and segmented brain tissue (i.e., GM, WM & GMWM). Subsequently, in each of 
those six brain age models two linear thresholds (i.e., NO vs. MCI and MCI vs. AD) were searched for 
to classify the subjects as NO, MCI, or AD based on individual deviation scores. Accuracy rates and 
receiver operating characteristics (ROC) for two-class classifications (i.e., NO vs. MCI, NO vs. AD, 
MCI vs. AD) were computed in the CAD Dementia training sample, resulting in the area under the 
ROC curve (AUC). Based on these results, the final brain age estimation models for classification were 
chosen. To differentiate between NO vs. MCI and MCI vs. AD the model using the linear combination 
of preprocessed GM and WM images with a 4 mm FWHM smoothing kernel showed best 
performances. To further refine the differentiation between NO vs. MCI we additionally used WM 
deviation scores (8 mm FWHM smoothing kernel). Then, overall classification accuracies were 
calculated following (Hand and Till 2001), as recommended in the CAD Dementia challenge rules. 
Subsequently, the final thresholds that reveal the highest overall classification accuracies in the CAD 
Dementia training sample were applied to classify the CAD Dementia test subjects. 

3 Results 

3.1 Performance of the age estimation model 

To analyze the performance of the specific models used for training of the typical age patterns in 
healthy subjects, leave-one-out was used in the IXI training sample. For the GMWM age estimation 



model (with 4 mm FWHM smoothing kernel) the correlation between estimated brain age and 
chronological age was r = 0.92 in the male [n= 250; mean (SD) age: 46.8 (16.4) years] as well as in the 
female subsample [n= 311; mean (SD) age: 48.6 (16.5) years]. The mean absolute error (MAE) was 5.1 
years in both subsamples. For the WM age estimation model (with 8 mm FWHM smoothing kernel) 
the correlation between estimated brain age and chronological age was r = 0.88 in the male and r = 0.90 
in the female subsample. The MAE in the male subsample was 6.4 years and 5.8 years in the female 
subsample. 

3.2 Classification based on brain age estimation in the CAD Dementia training sample 

Overall classification accuracies as calculated following (Hand and Till 2001), was 90% in the CAD 
Dementia training sample. Regarding the GMWM deviation score the thresholds are set at 2.6 to 
differentiate between NO vs. MCI and 4.5 to differentiate between MCI vs. AD. To further refine the 
differentiation between NO vs. MCI an additional threshold was set at -2.9 in the WM deviation score 
(Figure 3). 

Figure 3: Classification scheme for the CAD Dementia training (colored dots) and test subjects (black dots) 
depending on the thresholds in WM and GMWM deviation scores. Subjects in the green area are classified as 

“NO”, subjects in the blue area are classified as “MCI”, and subjects in the red area are classified as “AD”. 

The whole approach is fully automatic. Preprocessing the MRI data (as described in 2.2) takes about 
8 minutes per brain image. The whole process of training the brain age estimation models with about 
560 subjects from the IXI sample, subsequent estimation of the brain ages for all 384 CAD Dementia 
subjects, and final classification of the CAD Dementia training subjects takes about 110 seconds in 
total on MAC OS X, Version 10.5.8, 2.4 GHz Intel Core 2 Duo. 

4 Discussion 

For estimating the brain age from T1-weighted MRI scans, we propose a fast and fully automatic 
framework that includes preprocessing of the images, dimension reduction via PCA, training of a RVM 
for regression with a polynomial kernel of degree 1, and finally estimating the brain age of the CAD 
Dementia subjects. This age estimating framework turns out to be a straightforward method to 
accurately and reliably estimate brain age with as little preprocessing and parameter optimization as 
possible. Using MRI data of about 560 healthy subjects aged between 20 and 86 and scanned on three 



different scanners, the age estimation with RVR showed excellent performance, with an overall MAE 
of only 5 years and a correlation of r = 0.92 between the chronological and the estimated brain age. 

Using structural MRI data, our fully automated brain age estimation model aggregates the complex, 
multidimensional aging patterns across the whole brain to one single value (i.e. the deviation score) 
and finally identifies subtle pathological brain aging in the CAD Dementia training MCI and AD 
subjects, with increasing deviation scores at indicating an increased risk for AD. 

In conclusion, our brain age estimation framework could potentially help to recognize and indicate 
advanced brain atrophy on an individual level, thus contributing to an early diagnosis of 
neurodegenerative diseases like AD and facilitate early treatment or a preventative intervention.  
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