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Abstract. Deep learning techniques, particularly convolutional neural networks 
(CNNs), have gained traction for synthetic computed tomography (sCT) gen-
eration from Magnetic resonance imaging (MRI), Cone-beam computed tomog-
raphy (CBCT) and PET. In this report, we introduce a method to synthesize CT 
from MRI or CBCT. Our method is based on multi-slice (2.5D) CNNs. 2.5D 
CNNs offer distinct advantages over 3D CNNs when dealing with volumetric 
data. In the experiments, we evaluate the performance of our method for two 
tasks, MRI-to-sCT and CBCT-to-sCT generation. Target organs for both tasks 
are brain and pelvis. 

Keywords: Synthetic computed tomography, 2.5D convolutional neural net-
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1 Introduction 

Radiation therapy (RT) is a critical cancer treatment that often requires computed 
tomography (CT) for accurate dose calculations. Magnetic resonance imaging (MRI) 
provides superior soft tissue contrast, but lacks the electron density data of CT for 
dose calculations. Combining the two modalities presents challenges, including mis-
registration errors. 

MRI-only RT has emerged to address these challenges, reduce ionizing radiation 
exposure, and improve patient comfort. However, the generation of synthetic CT 
images from MRI (sCT) remains challenging due to the lack of direct correlation 
between nuclear magnetic properties and electron density. 

Deep learning (DL) techniques, particularly convolutional neural networks 
(CNNs), have gained traction for sCT generation from MRI, Cone-beam CT (CBCT) 
and PET [1].  
 In this report, we introduce a method to synthesize CT from MRI or CBCT. Our 
method is based on multi-slice (2.5D) CNNs. 2.5D CNNs offer distinct advantages 
over 3D CNNs when dealing with volumetric data. These benefits stem from a 
thoughtful compromise between computational efficiency and capturing relevant 
spatial context. In the experiments, we evaluate the performance of our method for 
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two tasks, MRI-to-sCT and CBCT-to-sCT generation. Target organs for both tasks are 
brain and pelvis. 

2 Proposed Method 

Our base method is same for both tasks and both organs. We use encoder-decoder 
type deep neural networks for converting MRI or CBCT images to synthetic CT 
(sCT) images.  

Figure 1 shows an overview of our method. Although the input images are 3D vol-
umes, we use a 2D deep neural network model with multi-slice inputs (2.5D CNNs). 
2.5D CNNs offer distinct advantages over 3D CNNs when dealing with volumetric 
data. These benefits stem from a thoughtful compromise between computational effi-
ciency and capturing relevant spatial context. Reasons why 2.5D CNNs are favored in 
many cases include reduced computational complexity, memory efficiency, leverag-
ing anisotropic resolution, multi-planar analysis, contextual information, and over-
coming class imbalance. 

In our model, N consecutive slices in an input volume are processed to produce one 
slice in a sCT volume. The consecutive slices are processed as an N channel 2D im-
age in our model. In training phase, N slices are randomly selected M times from each 
volume in the training dataset in each epoch. In inference phase, each volume is pro-
cessed in slice-by-slice way and each slice in sCT volume is produced.  

We use L1 error between predicted sCT volumes and ground truth CT volumes as 
the loss function.  

 

 
Fig. 1. Overview of our method. 

3 Experiments 

3.1 Dataset 

Data was acquired for radiotherapy treatments in the radiotherapy departments of 
UMC Utrecht, UMC Groningen, and Radboud Nijmegen) [2]. The numbers of data 
are summarized in Table 1. Each data includes source image (MRI for the MRI-to-
sCT task and CBCT for the CBCT-to-sCT task), ground truth (CT) and mask. 

We divide each dataset to training and validation data. The numbers of training and 
validation data are 162 and 18 in each dataset, respectively. 

 



Table 1. Datasets 

Task Organ Number of data 

MRI-to-sCT 
Brain 180 
Pelvis 180 

CBCT-to-sCT 
Brain 180 
Pelvis 180 

 
3.2 Experimental conditions 

We used U-Net [3] as the basic segmentation network and replaced its encoder part as 
EfficientNet [4]. We conducted hyper-parameter tuning. The hyper-parameters in-
clude the encoder size, the number of slices, the initial learning rate. As the results of 
hyper-parameter tuning, we selected EfficientNet-B7 as the encoder, 3 as the number 
slices. The initial learning rates were selected as 1×10-3, 5×10-4, 1×10-4, and 5×10-5 for 
task-1 brain, task-1 pelvis, task-2 brain, and task-2 pelvis, respectively. 

The optimizer was AdamW [5] and the learning rate was decreased at every epoch 
with cosine annealing. The number of epochs was 100, and We used the model with 
the lowest loss value for the validation data as the final model.  

As pre-processing, histogram normalization was performed for MRI volumes. No 
data augmentations were performed. 

3.3 Experimental results 

Table 2 shows the summary of the experimental results. We show two metrics; PSNR 
and Mean Absolute Error (MAE). These are the differences between sCT and ground 
truth CT. As for the tasks, it cannot be seen big differences between MRI-to-sCT and 
CBCT-to-sCT. As for the organs, the results for pelvis are slightly better than the 
results for brain. 

Figures 2, 3, 4 and 5 show examples of experimental results. In each figure, (a) 
shows an input slice (MRI or CBCT), (b) shows the corresponding slice of sCT, and 
(c) shows the corresponding slice of ground truth (CT).  

Table 2. Experimental results for validation dataset. 

Task Organ PSNR (dB)↑ Mean Absolute Error (HU)↓ 

MRI-to-sCT 
Brain 27.06 77.93 
Pelvis 28.51 64.26 

CBCT-to-sCT 
Brain 27.38 81.44 
Pelvis 28.12 68.07 
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(a)                              (b)                              (c) 

Fig. 2. Examples of experimental results in MRI-to-SCT / Brain. (a) MRI (input). (b) sCT 
(output). (c) CT (ground truth). 

   
(a)                                        (b)                                        (c) 

Fig. 3. Examples of experimental results in MRI-to-SCT / Pelvis. (a) MRI (input). (b) sCT (out-
put). (c) CT (ground truth). 

      
(a)                             (b)                               (c) 

Fig. 4. Examples of experimental results in CBCT-to-SCT / Brain. (a) CBCT (input). (b) sCT 
(out-put). (c) CT (ground truth). 

 

     
(a)                                        (b)                                        (c) 

Fig. 5. Examples of experimental results in CBCT-to-SCT / Pelvis. (a) CBCT (input). (b) sCT 
(out-put). (c) CT (ground truth). 



4 Conclusions 

In this report, we introduced a method to synthesize CT from MRI or CBCT. Our 
method is based on multi-slice (2.5D) CNNs. In the experiments, we evaluatde the 
performance of our method for two tasks, MRI-to-sCT and CBCT-to-sCT generation. 
Target organs for both tasks are brain and pelvis. From the experimental results, big 
differences in performance between MRI-to-sCT and CBCT-to-sCT were not ob-
served. As for the organs, the results for pelvis were slightly better than the results for 
brain. 
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