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Abstract. This report presents a novel diffusion model based method
to solve the Task 1 of SynthRAD 2023: MRI-to-sCT generation to facili-
tate MR-only RT. This task aims to convert MR to synthetic CT (sCT)
for treatment planning and dose calculation in radio therapy (RT). Our
proposed method utilizes the diffusion-based model, the Denoising Diffu-
sion Implicit Models (DDIM), for the sCT generation, where, each slice of
MRI images is converted to sCT images separately with the consistency
constrain provided by the adjacent slices. Then, two U-Net models are
employed as the refinement networks for noise and artifacts removal. Our
method achieves high scores of mean average error (MAE), peak signal-
to-noise ratio (PSNR) and structural similarity index measure (SSIM)
on the validation set.

Keywords: Image synthesis · Synthetic CT · MRI · Denoising Diffusion
Implicit Models.

1 Introduction

Radiotherapy (RT) plays an important role in the treatment of oncological pa-
tients. CT images are employed in RT to provide the tissue attenuation infor-
mation for dose calculation and treatment planning. [1] However, obtaining the
CT images introduces additional radiation to the patients.

The superb soft-tissue contrast of MRI can provide additional information
to RT. [2] However, due to the lack of the tissue attenuation information, MRI
cannot be directly used for dose calculation. Therefore, CT is still required, and
MRI is generally registered to CT space. Developing MRI-only RT can not only
reduce the radiation to patients, but also help to simplify and speed up the
workflow.
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Many methods have been proposed to convert MRI images to CT-equivalent
images, obtaining synthetic CT (sCT) [3] that has tissue attenuation informa-
tion for treatment planning and dose calculation. The organizers of SynthRAD
2023 [4] provide the first platform offering the public data evaluation metrics to
compare the latest developments in sCT generation methods, and the Task 1
focuses on the MRI-to-CT generation. This facilities the comparison of different
approaches.

In our work, we utilize the diffusion-based model for the sCT generation,
then we employ two vanilla U-Net models as the refinement networks to remove
the noise and artifact.

2 Method

The workflow of our method is shown in Fig. 1. Each MRI slice is padded and
re-sampled to the size of 256 × 256 firstly, and then the diffusion model [5, 6]
with consistency constraint is employed to generate the sCT images. After that,
the generated sCT images are re-sampled to the same shape as the original MRI
images. Finally, two vanilla U-Net [7] models are employed to remove the noise
and artifacts.

The CT data are normalized to −1 to 1 using Eq. 1 (donated as CTn) and
the MRI data are normalized to 0 to 1 using the min-max normalization.

CTn = (CT + 1024)/(3000 + 1024)× 2− 1 (1)

Our method uses diffusion-based method to generate the sCT images from 2D
MRI images. The Denoising Difusion Implicit Models (DDIM) [5, 8] is employed
in our diffusion model sampling, which learns a Markov chain to reverse the
non-Markov perturbation process using Eqs. 2, 3 and 4.
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where xt means the destroyed CT images after adding Gaussian noise for t times.
q means the distribution of x0 that x0 ∼ q(x0). ᾱt ∈ (0, 1) is a hyperparameter
chosen ahead of model training. T is the total number of iterations in the adding
and removing of noise, t ∈ 0, 1, · · · , T .

The input of the diffusion model contains 4 channels. The first 3 channels are
3 adjacent MRI slices in size of 256×256, padded and re-sized from original shape,
which reduces the computational cost and also avoids input of pure background
of MRI images. The second channel is the Gaussian noise xT follows xT ∼
N (0, 1).
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In each generation, we use 3 adjacent MR slices as input to generate the sCT
of the middle one. The overall loss function consists of two losses: reconstruction
loss and consistency loss. The reconstruction loss is chosen to be the L1 loss
between the ground truth CT and generated sCT. To prompt the consistency of
the generated sCT image with its adjacent slices, we also employ the L1 loss as
a consistency constraint between the sCT and its adjacent two CT ground truth
slices.

The generated sCT is then re-sampled to the same size as the MRI coun-
terpart. After that, We use two supervised U-Net models to remove noises and
artifacts in the generated sCT images. The L1 loss between sCT and ground
truth CT images is used as refinement loss while training. Note that the first
refinement network is to refine the sCT in the direction from top to bottom; the
second refinement network refines the sCT in the direction from front to back.

3 Implementation Details

We trained in total 6 models for both pelvis and brain data: 2 diffusion models
and 4 refinement networks. The diffusion model and refinement networks for the
brain and pelvis are in the same structure with also the same training hyperpa-
rameters, except for the time embedding in the diffusion model. While training
the diffusion models, we first train it for 140,000 iterations with a batch size
of 16, a learning rate of 2e-4 for the first 100,000 iterations, and 5e-5 for the
last 40,000 iterations. While training the refinement networks, a vanilla U-net is
trained for 20,000 iterations with a batch size of 16 and a learning rate of 2e-4.
While inference of diffusion models, DDIM sampling with 20 steps is adopted
for consideration of hardware limitation.
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Fig. 1. Workflow of our method.


