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Abstract. Within this note, we describe the framework we used for the
SynthRAD data challenge. With the kernel of a 3D nnUNet [1], it proves
the power of convolutional networks even when Transformers are the
most popular. The main contribution of this framework is an efficient
3D augmentation strategy, which takes the majority of the performance
gain over the baseline. Besides, we did minor modifications to the module
design and verified their effectiveness.
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1 Methods

In this section, the proposed framework’s intricacies are presented, which com-
prise two main components: data augmentation and network structures.

1.1 Augmentation

It is widely accepted that data quality supersedes algorithmic complexity in real-
world applications. In this challenge, given that no additional dataset is permissi-
ble, optimizing the use of the provided dataset becomes paramount. Traditional
data augmentation primarily focuses on 2D images, encompassing techniques like
random flipping, resizing, and rotating. Directly transferring these techniques to
3D images can be challenging. While one could argue that extracting 2D slices
or 3D patches from 3D volumes for augmentation is straightforward, this ap-
proach doesn’t harness the full potential of the 3D structure. Another method
involves augmenting the entire volume before extracting slices to feed into the
networks. This latter approach, however, compromises either randomness (by
feeding sequentially) or efficiency (by feeding only once).

Our proposed solution deviates from these conventional methods. We suggest
augmenting the sampling plane, a method that minimizes computation while al-
lowing slices/patches from various volumes to be combined into a mini-batch.
Initially, a standard sampling plane is constructed with center coordinates at
(0, 0, 0) and dimensions of [4, 128, 128]. This plane undergoes random resizing
between [0.7, 1.3], random rotations between [−30, 30] degrees, and random flip-
ping. After determining random offsets to the center—ensuring sampling re-
mains within the mask’s Volume of Interest—all sampling plane coordinates are
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adjusted by these offsets. Subsequently, patches are sampled from the current
volume. MRs and CTs are sampled using trilinear interpolation, while masks
use the nearest neighbor method.

1.2 Network Structure

Despite the emergence of attention-based networks in medical image processing,
UNet remains the prevalent architecture. Notably, nnUNet, a mature CNN-based
framework, has demonstrated its efficacy on several segmentation benchmarks.
We leveraged the 3D variant for our challenge, accommodating input and output
dimensions of [4, 128, 128]. Beginning with a 3×3×3 convolution, the architecture
employs four pairs of downsampling and upsampling CNN blocks, with channels
sized [128, 256, 512, 512]. Originally, each block contained two successive 3×3×3
convolutional layers. However, these made the network sluggish and prone to
overfitting. To counteract this, the layers were substituted with three sequential
convolutional layers having kernel dimensions of 1×3×3, 3×1×1, and 1×3×3,
reducing the parameter count to approximately 7

18 of the initial configuration.
Moreover, the MR patch was fused with the associated mask as network input,
and the predicted CT was post-processed by mask multiplication.

2 Experiments

2.1 Implementations

Pytorch [2] was employed to develop the entire framework, with network train-
ing executed on our clusters. Each experimental run utilized four RTX-2080-TI
GPUs. To expedite training, we incorporated the accelerate library [4] from
Hugging Face in conjunction with Microsoft’s DeepSpeed [3] tool. This setup
enabled the “fp16” option, diminishing memory usage and training duration.
Additionally, the ”stage2” option from DeepSpeed was activated to further op-
timize memory allocation.

2.2 Training Details

Owing to significant distribution differences between regions, separate networks
were designated for each region. This strategy resulted in training sets comprising
150 images per region. To facilitate local evaluation, 30 images from each region
were designated as the ”trainval” set, with the remaining 120 images reserved for
training. It should be noted that the final model submission underwent training
on the complete dataset.

For every experiment, a cosine learning schedule was employed, initiating
with a learning rate of 2e-4. The chosen batch size was 16. Routine experiments
were capped at 100 epochs, while the final submission extended to 200 epochs.
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3 Conclusion

An efficient and potent framework was developed for this data challenge. Stripped
of superfluous complexities, our streamlined framework delivered commendable
outcomes.
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