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Abstract. We participated in the “SynthRAD2023” competition, which
focuses on medical image translation fromMRI/CBCT to CT. To address
unsatisfactory image quality coming from artifacts such as blurry and
checkboard artifacts, we developed a ShuffleUNet model that uses differ-
ent down/upsampling modules called “pixel unshuffle” and “pixel shuf-
fle”. We also developed 3D pixel unshuffling/shuffling modules to com-
pensate for the 3D dimensionality of medical imaging such as MRI, CT,
and CBCT. Our model achieved 63.19/28.67/0.8753 (MAE/PSNR/SSIM)
for task 1 validation leaderboard and 58.14/30.36/0.8971 for task 2 val-
idation leaderboard.
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1 Introduction

Radiological imaging encompasses a broad spectrum of modalities including
MRI, CT, CBCT, X-ray, and more. Each modality offers unique advantages
and is optimized for specific clinical scenarios, enabling radiologists to diagnose
a plethora of medical conditions with heightened precision. While leveraging
multiple modalities concurrently would provide a comprehensive view of patient
pathology, it remains infeasible due to practical constraints such as cost, time,
and patient comfort. To circumvent these challenges, this study explores the
synthetic generation of CT images, termed synthetic CT (sCT), from MRI (task
1) and CBCT (task 2) scans. Generating sCT from MRI eliminates radiation
exposure risks, and creating sCT from CBCT reduces radiation doses and scan
durations.

The recent proliferation of AI in medicine has spurred the development of
myriad CNN-based solutions for medical image translation. This work delves
into the potential of deep-learning-driven techniques to facilitate the translation
from MRI/CBCT to CT.

2 Methods

2.1 Image processing

The MRI data underwent z-score normalization across the entire 3D image using
parameters µ = 0 and σ = 1. For both CBCT and CT, voxel intensities were
scaled according to the formula: x+1024

4024 , ensuring a standardized intensity range
between 0 and 1.
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2.2 Model developments

The design and training of our models took into account several considerations,
including (1) the choice of up/downsampling modules, (2) the selection of loss
functions, and (3) network architecture and data dimensionality specifics. When
assessing downsample modules, we evaluated performance metrics across pool-
ing, strided convolution, and pixel unshuffling techniques. Upsampling modules
were similarly benchmarked using interpolation, transposed convolution, and
pixel shuffling. Our loss function arsenal comprised pixel-wise L1 loss, 2D/3D
SSIM loss, and coefficient loss. Furthermore, we conducted experiments compar-
ing the efficacy of 2D versus 3D network structures and input data. After some
iterations of empirical experiments, we decided to use pixel shuffling/unshuffling
for down/upsampling modules, to solely use pixel-wise L1 loss, and develop 3D-
based network.

3 Results

Our model achieved 63.19/28.67/0.8753 (MAE/PSNR/SSIM) for task 1 valida-
tion leaderboard and 58.14/30.36/0.8971 for task 2 validation leaderboard.

4 Discussion and Conclusion

With limited available time, we could not perform extensive analysis of various
experiments we initially designed. Probably over time, we will develop our model
further in this topic.


