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Abstract. We present a method for MR-to-sCT image translation using paired 

training data. The method is based on the Pix2Pix conditional GAN architecture. 

A multi-channel (2.5D) approach is used to improve translation results thru-plane 

in comparison to applying a 2D model independently on each slice, while keeping 

inference time small in comparison to a full 3D approach. Separate models were 

trained for both brain (T1-weighted) and pelvis (T1- and T2-weighted) using al-

ready paired data as provided by SynthRAD2023 challenge. Models were vali-

dated using 60 validation subjects provided by the challenge. Image similarity 

metrics obtained during the validation phase are: mean absolute error (MAE) of 

64.27 ±14.15, peak signal-to-noise ratio (PSNR) of 28.64 ± 1.77, structure simi-

larity index (SSIM) of 0.872 ± 0.032. 

Keywords: Image Translation, Generative Adversarial Network, Deep Learn-

ing, Pix2Pix. 

1 Introduction 

MR-guided external beam radiotherapy (MRgRT) is one application that can strongly 

benefit from AI-powered image-to-image translation, for generating synthetic CT 

(sCT) contrast from MR images – a process we refer as MR-to-sCT. MR-to-sCT is an 

enabler for MR-only radiotherapy workflows. Such workflow could avoid the use of 

ionizing radiation imaging, while providing radiation-oncologists (RO) with enhanced 

soft-tissue visualization (with MRI) alongside co-registered sCT contrast with proper 

Hounsfield Units (HU) to infer electron density (ED) values for RT dose calculation. 

Moreover, MR-to-sCT can significantly enhance current online plan adaptation tech-

nique in MRgRT. For example, current online adaptative workflows with Unity MR-

Linac (Elekta AB, Stockholm, Sweden) require manual or semi-automatic contouring 

of different structures on the daily MRI, including all bony anatomy. Bulk electron 

density values are then assigned to each contoured structure as part of the plan adapta-

tion process. MR-to-sCT could provide more realistic HU and ED values, while signif-

icantly reducing the burden of re-contouring all bony anatomy on each daily MRI. 

One method for generating realistic sCT is to use deformable image registration of 

the patient planning CT with the daily MRI. However, deformable registration across 
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different modalities is limited in accuracy, especially for highly elastic structures like 

the bladder. Alternatively, AI-powered image translation can generate sCT contrast di-

rectly from the daily MRI without the need for deformable registration. One known 

challenge with this approach is to generate a sCT images with precise HUs. 

AI methods based on Generative Adversarial Networks (GANs) are commonly used 

for image-to-image translation in medical imaging applications. For example, Condi-

tional GANs [1] are commonly used to train models with paired and accurately regis-

tered training images. Alternatively, CycleGANs [2] are often used when training data 

is unpaired. As such, they can be trained using unmatched training samples that are 

only available in one modality (MR or CT).  

This paper describes a method to solve the MR-to-sCT translation problem posed by 

the SynthRad2023 challenge, for both pelvis and brain tumor sites. Given that all train-

ing samples provided for this challenge are paired, we have chosen a paired method 

based on conditional GAN architecture. Section 2 provides implementation details 

about the method. Section 3 describes strategies for hyperparameter optimization and 

summarizes the results obtained during the challenge’s validation phase. Section 4 dis-

cusses specific design decisions, as well as limitations of the proposed method and po-

tential areas of future work. 

2 Method 

2.1 SynthRAD2023 Data 

For task 1 of the SynthRAD2023 challenge, fully anonymized data was collected from 

3 different sites: Radboud University Medical Center, University Medical Center 

Utrecht, University Medical Center Groningen. The challenge consists of 3 phases: 

training phase, validation phase and test phase. For the training phase, a set of 180 brain 

MRI/CT pairs and 180 pelvis MRI/CT pairs was provided to the participants. The MR 

and CT data were rigidly aligned by the organizers. An evaluation mask was also pro-

vided by the organizers. All brain MRIs were T1-weighted. 120 pelvis MRIs were T1-

weighted. The remaining 60 pelvis MRIs were T2-weighted. For the validation phase, 

a set of 30 brain MRI images and 30 pelvis MRI images was provided to the partici-

pants. The corresponding CT images were not provided to the participants. For the test 

phase, data is not provided to the participants. 

2.2 2D Conditional GAN 

We implemented a 2D conditional GAN (Pix2Pix) network [1]  as follows. Let 𝐺: 𝑋 →
𝑌 be a generator that translates images from domain 𝑋 to domain 𝑌, and 𝐷 be a dis-

criminator network trained to distinguish between true and synthetized images in do-

main Y. The original Pix2Pix objective is: 

 ℒ(𝐺, 𝐷) = ℒ𝐺𝐴𝑁(𝐺, 𝐷) + 𝜆ℒ𝑅(𝐺), (1) 
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where ℒ𝐺𝐴𝑁 is the GAN loss and ℒ𝑅 is a regression loss measuring the difference be-

tween the output translation and the (aligned) ground truth. In our implementation, three 

possible objective functions can be used for ℒ𝐺𝐴𝑁: classic [3], least squares [4], and 

Hinge [5]. A L1 loss term is used for ℒ𝑅: 

 ℒ𝑅 = 𝔼𝑥,𝑦‖𝐺(𝑥) − 𝑦‖1 (2) 

 The generator network is implemented with a ResUnet [6]. The number of layers 

and filters at each layer is fully parametrizable. The discriminator network is imple-

mented similarly to the encoding part of the ResUnet. Both the generator and discrim-

inator network can optionally use spectral normalization [7] following each convolu-

tional layer, and instance normalization is used in place of group normalization. 

Data augmentation can optionally be used and is randomly run on-the-fly during the 

training loop. Supported data augmentation is loosely inspired from BigAug [8] and 

includes: affine transformation, synthetic multiplicative bias field, blurring, sharpening, 

Gamma contrast change, linear intensity transform. Note that the affine transformation 

is applied to both MR and CT images. All other forms of data augmentation are applied 

to the MR images only. 

The model is implemented in Python using the PyTorch library. Optimization is car-

ried out using Adam with β1 = 0.5 and β2 = 0.999. A slow-moving exponential moving 

average (EMA) [9] of the generator parameters is tracked during training (with α = 

0.999, weights updated at every batch) and used as the final model for inference. A 

complete list of network hyperparameters is provided in Table 1. 

2.3 Image Pre-Processing 

The voxel resolution for model training was chosen as 1x1x1 mm for brain model and 

1x1x2.5 mm for the pelvis. If necessary, MR and CT images are resampled to the model 

resolution and back to native resolution (during inference). MR and CT intensities are 

linearly rescaled to a range of [-1, +1], with a source range determined using percentiles 

for MR and a fixed source range of [-1000, +2200] HU or [-1000, +3000] HU to support 

metal artifacts. In our experiments, models trained with the full range [-1000, +3000] 

were slightly less accurate because 1/4 of the intensity range [+2000, +3000] is reserved 

for unusual intensities. One strategy is to train one network with the full range and one 

with a narrower range, and use the content of the first network for intensities > 2200 (if 

any) and the content of the latter network otherwise. 

 During training, patches with a predefined sample size are randomly drawn from the 

training set images and randomly augmented. During inference, the test image is sub-

divided into overlapping patches and the model output combined via a weighted aver-

age – when combining the output of multiple overlapping patches, higher weight is 

given if a pixel is near the center of the patch and lower weight if the pixel is close to 

the edge of a patch.    
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Table 1. List of model hyperparameters 

Hyperparameter Description Recommended value 

ℒ𝐺𝐴𝑁  
Type of adversarial loss function to use (ei-

ther Classic, Least Squares or Hinge) 
Least Squares 

Learning rate 

Learning rate for the generator (G) and dis-

criminator(D). The learning rate will line-

arly decrease to zero starting when half the 

number of iterations has been completed. 

G: 1e-4 

D: 5e-5 

Num filters 
Number of filters per layer in the generator 

(G) and discriminator (D) 

G: 64,128,256,512 

D: 64,128, 256,512,512 

Num disc updates 
Number of discriminator updates per gener-

ator update 
2 

Spectral norm 

Specify if spectral normalization layers are 

used in both the discriminator and generator 

networks 

True 

L1 weight (𝜆) Weight of L1 loss term 50 

Voxel size Voxel size in mm 
Brain: 1x1x1 mm 

Pelvis: 1x1x2.5 mm 

Sample size 

The size of a sample (in voxels) used during 

training and inference. For a 2D network, 

the 3rd dimension is the channel dimension 

(c.f. Section 2.4) 

192x192x5 

Batch size Number of samples per batch 16 

Num batches per it-

eration 
Number of batches per iteration 300 

Num iterations Total number of iterations 2500 

Data augmentation Option to turn on data augmentation True 

2.4 Multi-Channel Implementation 

One problem with applying a 2D neural network independently on each axial slice of a 

3D image is the so-called “staircase effect” that can appear in other orientations (sagittal 

and coronal). This is shown in the left image of Fig. 1. One possible mitigation is to 

train a 3D network. However, this can lead to larger training and inference time, and 

higher GPU memory consumption in comparison to a 2D approach. Instead, we used a 

2.5D approach where five consecutive slices of data are supplied to the network, using 

the channel dimension. As illustrated in the middle image of Fig. 1, it solves the stair-

case effect without the drawbacks of a full 3D approach [10]. 

At training time, no change is required other than supplying randomly sampled 

groups of 5 consecutive slices of data. At inference time, the test image is subdivided 
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into patches that overlaps both in-plane and thru-plane. The model output is averaged 

as previously described in section 2.3.  

 

 

Fig. 1. Use of multiple channels to eliminate “staircase effect” in 2D pix2pix. 

3 Results 

3.1 Strategy for hyperparameter tuning 

During the training phase, we split the data for each anatomy (brain and pelvis) into a 

training set (75% of data) and a tuning set (25% of data). The training set is used to 

train the network and the tuning set is used for computing the image similarity metrics 

– mean absolute error (MAE), peak signal-to-noise (PSNR) and structure-similarity in-

dex (SSIM) – at the end of each training run. We started with an initial set of hyperpa-

rameters and then launched several trainings for the brain anatomy while varying one 

parameter at a time. Once a new set of best hyperparameters was found, this procedure 

was repeated a second time to obtain a final set of hyperparameters. Finally, we did a 

small hyperparameter search on the pelvis anatomy, but no changes were found neces-

sary other than the voxel size for keeping the training time reasonable.  

  

3.2 Validation phase results 

Once the validation phase started, we trained brain and pelvis models independently, 

using 100% of the training data and using best found hyperparameters. Table 2 shows 

the best results we obtained during validation. The MAE is 64.27 ± 14.15 the PSNR is 

28.64 ± 1.77 and the SSIM is 0.872 ± 0.032. Representative examples of brain and 

pelvis translations are shown in Fig. 2. For each model, 6 networks were trained with 

the hyperparameters described in Table 1. The output of all 6 networks were combined 

with ensemble averaging. The average inference time for one network is approximately 

20 seconds for brain images and 30 seconds for pelvis images on a workstation 

equipped with a NVIDIA V100 16GB GPU card. With ensemble averaging, the infer-

ence time scales linearly with the number of networks composing the model.  
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Fig. 2. Representative examples of MR-to-sCT translation on the validation set. Images with 

best, median and worst MAE are shown. Synthetic CT images are displayed with different win-

dow/level settings to emphasis brain and/or soft tissue (middle image) and bone (right image). 
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Table 2. Final results of validation phase 

 MAE PSNR SSIM 

Mean 64.27 ±14.15 28.64 ± 1.77 0.872 ± 0.032 

Min 32.75 24.60 0.789 

25pc 55.73 27.56 0.855 

50pc 62.28 28.66 0.873 

75pc 72.58 29.38 0.890 

Max 109.88 34.58 0.969 

 

4 Discussion 

Results presented in section 3 indicate that a model based on the pix2pix architecture 

is suitable for MR-to-sCT image translation. Given that this is a paired method, accurate 

image registration is necessary between each MR/CT pairs. We used rigid data align-

ment as provided by the challenge organizers, but we noticed some images could have 

benefited from deformable image registration (for example, some MR-CT pairs exhib-

ited different bladder size). However, the use of deformable image registration caused 

degradation of our image similarity metrics. This is either due to difficulties obtaining 

accurate deformable image registration inter-modality, or because the ground truth val-

idation data was also rigidly registered. 

Different pulse sequences were used for the pelvis MRI (2/3 of the training data was 

T1-weighted, 1/3 was T2-weighted). Additional accuracy could be obtained by training 

different models for T1-weighted and T2-weighted MRI. This could not be explored 

since no information about the MR contrast is provided at inference time.  

For this challenge, the maximum inference time was set to 15 minutes per image, 

which is acceptable for offline use, but not suitable for online adaptive workflows. In 

this work, ensemble averaging leads to small improvements on the overall image sim-

ilarity metrics. However, the computational cost increases linearly with the number of 

networks in the model, with possibly very limited impact on the dosimetry. As future 

work, knowledge distillation [11] could be explored to reduce computational costs. 

For the pelvis tumor site, gas pockets in the rectum may not translate well into the 

sCT. This is because transient gas pocket information is not paired in the training data 

(i.e. MR and CT scans were not taken simultaneously). Moreover, they are difficult to 

visualize in MRI. Consequently, gas pockets may be hallucinated or missed out in the 

sCT. One mitigation could have been to mask all gas pockets in the training CTs with 

an average HU value. This could prevent the model from hallucinating air pockets dur-

ing inference and, to some extent, would be consistent with some clinical workflows 

(large gas pockets are sometimes manually segmented and assigned an average 

HU/ED). However, during online imaging, gas pockets can provide useful information 

and radiation therapists may decide to wait for it to pass before starting the treatment.   

In conclusion, we presented a 2.5D (multi-channel) pix2pix network for training 

MR-to-sCT models and demonstrated results for both brain (T1-weighted) and pelvis 

(multi-contrast) anatomies. Separate models were provided for the different tumor sites 

as it led to superior image similarity metrics.  
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