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Abstract. Synthetic CT generation from MRI and CBCT is an essen-
tial task to facilitate clinical workflow in radiation therapy. In this paper,
we describe the participation of team KoalAI for both MRI-to-CT and
CBCT-to-CT tasks in SynthRAD2023 challenge. The major contribution
is the proposed Locally-enhanced 3D Pix2pix GAN, which improves the
local details of 3D pix2pix GAN by incorporating an additional 2D local
discriminator. This model outperformed other implemented comparison
methods including diffusion models and unsupervised GAN in local val-
idation. Model ensembling was used to further improve the generative
performance.
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1 Introduction

Radiation Therapy (RT) is a widely used medical treatment for cancer. It in-
volves delivering targeted radiation to cancerous cells and is often used in con-
junction with surgery or chemotherapy. This type of treatment is non-invasive
and is commonly employed to treat various types of cancer, including prostate,
breast, lung, and head and neck cancers. The standard RT workflow relies on
three imaging modalities: computed tomography (CT) for dose calculation based
on electron density information, magnetic resonance imaging (MRI) for better
soft tissue contrast, enabling more accurate target delineation [4] and minimis-
ing the risk of toxicity in healthy tissue [2], and cone-beam CT (CBCT) to
position the patient under the linear accelerator (LINAC) by registration with
the planning CT.

Traditionally, both CT and MRI images are co-registered to define the treat-
ment plan. However, this step introduces uncertainties, with reported calcula-
tions of up to 2 mm for prostate cancer patients [8]. In order to enhance efficiency
and precision in the clinical workflow, MRI-only RT has gained popularity, ren-
dering the use of CT obsolete. The interest in MRI for RT has led to the de-
velopment of MRI-LINAC machines, which combine an on-board MRI scanner
and a linear accelerator. The advantage of this device is its ability to accom-
modate image guided adaptive RT (IGART), which considers daily anatomical
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changes and recalculates the dose distribution prior to each session. However,
a major limitation of MRI for treatment planning is its lack of information on
electron density, which is essential for accurate dose calculation. To address this,
several methods have been proposed in the literature for generating synthetic
CT scans (sCT) from MRI, including bulk-density, atlas-based, and voxel-based
techniques[5], and more recently machine-learning based methods [6]. Among
these, deep learning methods have shown promise in terms of both robustness
and accuracy [1].

CBCT, on the other hand, enables patient positioning under the LINAC as
well as real-time monitoring of the tumour during treatment. However, these
imaging modality suffer from limited soft tissue contrast, artefacts and noise,
and expose patients to additional radiation. sCT generation from CBCT would
allow for accurate dose calculation and improved image-guided adaptive RT
(IGART). As for sCT generated from MRI, deep learning based methods offer
precise Hounsfield Units (HU) prediction from CBCT [10].

Deep learning-based sCT generation methods employ convolutional neural
networks (CNNs) as model architectures, but recently transformers have demon-
strated great potential in image synthesis [12]. Hybrid networks, combining
CNNs and transformers [3, 13], or diffusion model [7, 9], have been proposed
to extract both local texture and global information. The primary advantage
of transformers lies in their ability to better understand contextual information
compared to CNNs. However, they do tend to come with a higher computational
cost and require larger amounts of data.

In this paper, we proposed a locally-enhanced 3D pix2pix GAN for synthetic
CT generation. We also implemented other generative models including diffu-
sion models and unsupervised GAN network. The experimental results show the
proposed model achieved the best results to compared to other implemented
methods.

2 Methodology

2.1 Data description

Multi-center datasets were provided for both task1 (MRI-to-CT) and task2
(CBCT-to-CT) [11]. The data were collected from three centers (UMC Utrecht,
UMC Groningen, and Radboud Nijmegen). As shown in Fig 1, each task con-
tains a brain dataset and a pelvis dataset. A total of 270 samples per dataset
was separated into 180 training samples, 30 validation samples and 60 test-
ing samples. For training data, masks were provided in addition to MRI-CT or
CBCT-CT pairs. For validation and testing data, target CT was not provided to
participants. During the algorithm development, we further randomly divided
the training data into 80% local train set and 20% local validation set for the
model selection purpose.
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Fig. 1. Data description.

2.2 Preprocessing

Task1 Both brain and pelvis MRI were preprocessed with 1) histogram match-
ing with a random MRI sample, 2) N4 bias field correction, 3) smoothing with
gradient anisotropic diffusion filter, and 4) masking using provided body mask.
Additionally, arms in pelvis MRI were removed using a 2d connected-component-
based algorithm. All MRI was scaled to [-1, 1] using min-max normalisation,
while CT was scaled to [-1, 1] using intensity range [-1024, 3000].

Task2 Both brain and pelvis CBCT were preprocessed with 1) lower-bound
intensity scaling (from 0 to -1024), 2) masking using the provided body mask, 3)
intensity clipping to [-1000, 3000]. Additionally, to remove bright spots around
the body region in pelvis CBCT, a thresholding-based algorithm was applied
in the adjacent area of the body, followed by a 2d connected-component-based
algorithm to remove noise. All CBCT and CT were scaled to [-1, 1] using an
intensity range of [-1024, 3000].

2.3 Locally-enhanced pix2pix GAN

The proposed locally-enhanced pix2pix GAN is described in Fig. 2. In terms of
model architecture, the model consists of a 3D Generator and a Locally-enhanced
3D Discriminator. The 3D generator takes a 3D patch as input and produces
a translated 3D image. The generator can be implemented using Resnet, Unet,
etc. The locally-enhanced 3D discriminator takes both translated 3D images and
target 3D images as input and produces binary decisions. Specifically, the input
3D patch will be separated into two pathways with an image iterator. The first
pathway feeds the original 3D patch to a 3D patch discriminator. The second
pathway randomly samples 2D images from the 3D patch and feeds them to
2D patch discriminator. In terms of the loss function, MSE loss was used for
the adversarial training, while l1 loss was used for pixel-wise supervision. An
ensemble of models consisting of different 3D generators is used to enhance
generative performance.
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Fig. 2. Model architecture of Locally-enhanced 3D Pix2Pix GAN.

3 Results

3.1 Metrics

The quality of synthetic CT was evaluated using both image similarity metrics
and dose evaluation metrics. Image similarity metrics included mean absolute er-
ror (MAE), peak-signal-to-noise (PSNR), and structural similarity index (SSIM)
between synthetic CT and CT. These image metrics used in local validation were
implemented by the code provided at https://github.com/SynthRAD2023/metrics.
Dosimetric evaluation included 1) relative dose difference, 2) dose-volume his-
togram, and 3) gamma index. Dose calculation is performed with matRad.

3.2 Implementation

The Adam optimizer was used with a learning rate of 0.0002. The weight for
adversarial loss was set to 1, and the weight for l1 loss was set to 100. The batch
size was set to 3. The training stopped when the validation MAE converged. Var-
ious 3D patch sizes were experimented including (256, 256, 56), (256, 56, 256),
(56, 256, 256), (128, 128, 128). We implemented data augmentation, including
affine transformation, elastic deformation, random intensity shift, random con-
trast adjustment, and random histogram shift.

3.3 Task1-specific implementation and results

As shown in Table 1, the model for task1 pelvis was implemented with a single
Locally-enhanced 3D pix2pix network, while the model for task1 brain was im-
plemented with an ensemble of three networks with different patch sizes (256,
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256, 56), (256, 56, 256), and (56, 256, 256). The best MAE on the validation
leaderboard was 69.41 for task1 pelvis and 74.28 for task1 brain.

Table 1. Task1 implementation and validation leaderboard results

Data Generator Discriminator Patch size Val-MAE

Task1 pelvis Resnet LE Discriminator (256, 256, 56) 69.41

Task1 brain
Resnet LE Discriminator (256, 256, 56)

74.28Resnet Patch Discriminator (256, 56, 256)
Resnet LE Discriminator (56, 256, 256)

3.4 Task2-specific implementation and results

As shown in Table 2, the model for task2 pelvis was implemented with an en-
semble of 3 networks with different generator architecture and patch, while the
model for task2 brain was implemented with an ensemble of three networks with
different patch sizes (256, 256, 56), (256, 56, 256), and (56, 256, 256). The best
MAE on the validation leaderboard was 62.48 for task2 pelvis and 74.28 for
task1 brain.

Table 2. Task1 implementation and validation leaderboard results

Data Generator Discriminator Patch size Val-MAE

Task2 pelvis
Dynet Patch Discriminator (128, 128, 128)

62.48Resnet LE Discriminator (256, 256, 56)
Unet Patch Discriminator (448, 448, 64)

Task2 brain
Resnet LE Discriminator (256, 256, 56)

52.89Resnet LE Discriminator (256, 56, 256)
Resnet LE Discriminator (56, 256, 256)
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