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Abstract. Medical imaging, especially in radiotherapy, is pivotal for oncological
diagnoses and treatments. Traditionally, X-ray imaging has been crucial in radio-
therapy (RT) for patient positioning and monitoring at various stages of dose
delivery. Cone-beam computed tomography (CBCT) is integral for image-guided
adaptive radiation therapy (IGART) in both photon and proton therapies. Yet,
artifacts like shading, streaking, and cupping due to scatter noise and truncated
projections, hinder CBCT’s suitability for precise dose calculations. To address
this, ”synthetic CT” (sCT) has been introduced, enhancing CBCT quality to CT
levels. Transitioning from CBCT to CT permits accurate dose computations, re-
fining adaptive CBCT-based RT and elevating IGART quality. Lately, deriving
sCT from CBCT using artificial intelligence, including machine or deep learn-
ing, has gained traction. We introduce a deep learning approach with multi-scale
residual modules for CBCT-to-sCT generation. In this work, we propose a deep
learning method based on multi-scale residual modules for generating sCT from
CBCT. In the quantitative evaluation of the MICCAI 2023 SynthRAD Challenge
public validation cases, this method achieves the average PSNR of xxxx (Brain
PSNR of xxxx, Pelvis PSNR of xxxx), the average SSIM of xxxx (Brain SSIM of
xxxx, Pelvis SSIM of xxxx) and the average MAE of xxxx (Brain MAE of xxxx,
Pelvis MAE of xxxx).
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1 Introduction

Medical imaging, especially in radiotherapy, is pivotal for oncological diagnoses and
treatments. Traditionally, X-ray imaging has been crucial in radiotherapy (RT) for pa-
tient positioning and monitoring at various stages of dose delivery. Cone-beam com-
puted tomography (CBCT) is integral for image-guided adaptive radiation therapy in
both photon and proton therapies. Yet, artifacts like shading, streaking, and cupping
due to scatter noise and truncated projections, hinder CBCT’s suitability for precise
dose calculations. To address this, ”synthetic CT” (sCT) has been introduced, enhanc-
ing CBCT quality to CT levels. Transitioning from CBCT to CT permits accurate dose
computations, refining adaptive CBCT-based RT and elevating IGART quality. Lately,
deriving sCT from CBCT using artificial intelligence, including machine or deep learn-
ing, has gained traction. In this work, we propose a deep learning method based on
multi-scale residual modules for generating sCT from CBCT. Inspired by Ge et al. [1],
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we used the consecutive 3D multi-scale residual blocks to richly extract the multi-scale
stereo feature for fine-granted and latent spatial structure mining from the CBCT noisy
volume. Then, a creative stereo-correlation constraint is used by elegantly penalizing
the gradient deviation in the voxel adjacent region (i.e., 3D 26-neighborhoods) for guid-
ing the structural detail. Further, a image-expression constraint on the perceptual feature
representations that are transformed from the pretrained deep convolution autoencoder,
was added to maintain the scene content. The main contributions of this work are sum-
marized as follows:

1) We proposed a multi-scale residual-based deep learning method for automated gen-
erating synthetic CT from CBCT.

2) A stereo-correlation constraint was used to guide the structural details of the gen-
erated results, and a image-expression constraint was used to maintain the scene
content.

3) The effectiveness of the proposed method are demonstrated on SynthRAD2023
challenge public validation cases, where we achieve the competitive results in terms
of quantitative image quality.

2 Dataset and Evaluation Metrics

2.1 Dataset

Description of the dataset. The SynthRAD2023 challenge dataset contains imaging
data of patients who underwent radiotherapy in the brain or pelvis region. Overall, the
population is predominantly adult and no gender restrictions were considered during
data collection. The inclusion criteria was the acquisition of a CT and CBCT, used for
patient positioning, were required. Data was collected at 3 Dutch university medical
centers: Radboud University Medical Center, University Medical Center Utrecht and
University Medical Center Groningen. For anonymization purposes, from here on insti-
tution names are substituted with A, B and C, without specifying which institute each
letter refers to.

Table 1. Dataset.

Brain Pelvis
A B C A B C

Training 60 60 60 60 60 60
Validation 10 10 10 10 10 10

Testing 20 20 20 20 20 20

Details of data split. For brain and pelvis, each center provides 60 patients for a total
amount of 180 training patients per anatomy. For validation and testing, an additional
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30/60 patients are available for each anatomy. In total, for all anatomies combined, 540
image pairs (360 training, 60 validation and 120 testing) are available in this dataset,
as shown in Table 1. For each anatomy we train separately to obtain the corresponding
model. The training dataset (180 cases) was randomly divided into training (165 cases,
55 cases for each center) and internal validation (15 cases, 5 cases for each center) set,
where internal validation set is used to model selection.

2.2 Evaluation Metrics

Image similarity will be evaluated by ranking (equal weights) mean absolute error
(MAE), peak-signal-to-noise (PSNR), and (structural similarity index) SSIM between
sCT and CT. Dosimetric evaluation will be performed globally and locally by compar-
ing photon and proton dose calculations between reference CT and sCT. Relative dose
difference, dose-volume histogram, and gamma index will be used to rank the dosimet-
ric evaluation.

3 Method

As mentioned in Figure 1, the input CBCT is first normalized based on the center and
anatomical structure, then generated in a sliding window manner, and finally the gener-
ated results are concatenated to obtain the final synthetic CT prediction.

CBCT

Crop

Model
Put back

Slide Window

Synthetic CT

Normalization

Fig. 1. Framework pipeline
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3.1 Normalization

After analyzing the dataset, we found that different centers/anatomies have different in-
tensity distributions. Therefore, we set different windows for different centers/anatomies
to perform intensity normalization as follows:

– Brain Center A: [0, 3000];
– Brain Center B / C: [-1000, 2000];
– Pelvis Center A: [0, 2000];
– Pelvis Center B / C: [-1000, 1000];

After windowing, the data is scaled to [0,1] using the max-min normalization method.
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Fig. 2. (a) Multi-scale residual block is constructed by collateral 3D atrous convolutions, hierar-
chical fusion and residual connection, for fine-granted and latent spatial structure in sparse and
noisy volume; (b) ResVox is composed multi-scale residual blocks and two standard 3D convo-
lution layers for the final sCT generation; (c) ResVoxD performs a 2x downsampling after the
first convolution layer of ResVox, then passes through consecutive multi-scale residual blocks,
then goes through a deconvolution to restore the original size, and finally performs the final sCT
generation through two standard 3D convolution layers.

3.2 Proposed Method

Network architecture details. Inspired by Ge et al. [1], we used the consecutive 3D
multi-scale residual blocks to richly extract the multi-scale stereo feature for fine-granted
and latent spatial structure mining from the CBCT noisy volume. As shown in Fig-
ure 2(a), the multi-scale residual block innovatively deploys collateral 3D atrous con-
volutions, the hierarchical fusion and the residual connection, to mine the fine-granted
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and latent spatial structure in the sparse and noisy volume. We designed two archi-
tectures, the architecture without downsampling is called ResVox, and the architecture
with one downsampling is called ResVoxD, as shown in Figure 2 (b) and (c).
Stereo-Correlation Constraint and Image-Expression Constraint. The stereo-correlation
constraint and image-expression constraint are added into the optimization process of
our method, to naturally guide the structural detail and scene content in the gener-
ated image and improve the generalization of the framework. Specifically, the stereo-
correlation constraint is proposed to measures the similarity of the inter-voxel changes,
namely stereo gradient, between the generated image and the corresponding CT. Anal-
ogously, the image-expression constraint is performed on the high-level feature repre-
sentations space that encodes the perceptual and semantic information.

1) For the stereo-correlation constraint, the stereo gradient vector is constructed on
each voxel pi,j,k with its 26 adjacent voxel pi+a,j+b,k+c(a, b, c = 0,±1, and a2 +
b2 + c2 ̸= 0) to characterize the voxel correlation of the local changes in the neigh-
borhood region, as:

gi,j,k = [pi,j,k − pi+a,j+b,k+c], for a, b, c = 0,±1, and a2 + b2 + c2 ̸= 0 (1)

Then this penalty item on gradient deviation is implemented as Eq.(2), to guide
the structural detail. In Eq.(2), gi,j,k and g′i,j,k are from the ground-truth CT y ∈
RMp×N+p×Dp and generated results y′ ∈ RMp×N+p×Dp , respectively, and ∥·∥2 is
L2 norm.

LSteCor =
1

MpNpDp

∑
i,j,k

||gi,j,k − g′i,j,k||22 (2)

2) For the image-expression constraint, the high-level feature representations is trans-
formed by the pretrained model (PM). Such remarkable reconstruction from the
PM feature and the large perceptive field of its each element obviously indicate
the intrinsic expression for the global content of the scene. This extracted feature
(RMf×Nf×Df×Cf ) from the PM is used for the image-expression constraint, as:

LImgExp =
1

MfNfDfCf

∑
||PM(y)− PM(y′)||22 (3)

Loss function L1 loss is used as the reconstruction loss combined with the two con-
straints, and the final loss function is formulated as:

Loss =
1

MpNpDp

∑
i,j,k

|yi,j,k − y′i,j,k|+ α ∗ LSteCor + β ∗ LImgExp (4)

3.3 Post-processing

Ensembling: we selected several models for ensemble based on the results of the inter-
nal validation set and the official validation set. Specifically, for each case, we average
the prediction results of several models as the final prediction result.
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3.4 Environments and requirements

The environments and requirements of the method is shown in Table 2.

Table 2. Environments and requirements.

Windows/Ubuntu
version

Ubuntu 18.04.6 LTS

CPU
Intel(R) Xeon(R) Silver 4210R
CPU@2.40GHz

RAM 4×32GB

GPU Nvidia A6000

CUDA version 11.4

Programming
language

Python 3.8.10

Deep learning
framework

Pytorch (Torch 1.8.1, torchvision 0.9.1)

3.5 Training protocols

The training protocols of the method is shown in Table 3.

Table 3. Training protocols.

Data augmentation
methods

Crop, Resize, mirroring.

Initialization of
the network

”he” normal initialization

Batch size 1

Patch size 8×180×180

Hyper-parameters in
loss

α = 50, β = [0.1, 1]

Max epochs 1000

Optimizer AdamW

Initial learning rate 0.0003

Learning rate decay
schedule

ReduceLROnPlateau

Training time 72 hours
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3.6 Testing protocols

Patch aggregation method: use the sliding window manner for prediction. Window
size is the same as the input size, and the step is 2 of z-axis and 32/48 of y-axis and
x-axis. Multiple predictions for each voxel are averaged to get the final prediction.

4 Results

The quantitative results of final ensemble model on the internal validation set are shown
in Table 4. On the internal validation set, our final ensemble prediction achieved the
average MAE of 52.4615, average PSNR of 30.6649, and the average SSIM of 0.9071.
On the public validation set, our final ensemble prediction achieved the average MAE of
53.0297 (Brain MAE of 47.7308, Pelvis MAE of 58.3285), average PSNR of 30.7014
(Brain PSNR of 31.8243, Pelvis PSNR of 29.5784), and the average SSIM of 0.9028
(Brain SSIM of 0.9269, Pelvis SSIM of 0.8787).

Table 4. Quantitative results in terms of MAE, PSNR, and SSIM.

Internal Public
MAE PSNR SSIM MAE PSNR SSIM

Brain 48.6591 31.4869 0.9291 47.7308 31.8243 0.9269
Pelvis 56.2639 29.8429 0.8851 58.3285 29.5784 0.8787

All 52.4615 30.6649 0.9071 53.0297 30.7014 0.9028

5 Discussion and Conclusion

In this work, we propose a deep learning method based on multi-scale residual modules
for generating sCT from CBCT. During method development we found that anatomy
had a strong influence on the results, with brains showing significantly better synthetic
quality than pelvis. On the other hand, various noises inherent in CBCT can also af-
fect the synthesis quality. Although the performance is not perfect on some data, our
method achieves competitive synthesis performance. We believe that by increasing the
number and diversity of training data, better deep learning methods can be developed
for synthesizing CT from CBCT.
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