
Multi-Planar Convolutional Neural Networks for
MRI and CBCT to CT Translation

Gustav Müller-Franzes⋆1(�)[0000−0002−7413−2570], Firas
Khader⋆1[0000−0001−5089−3589], and Daniel Truhn1[0000−0002−9605−0728]

University Hospital RWTH Aachen, Aachen, Germany
{gumueller,fkhader,dtruhn}@ukaachen.de

https://www.ukaachen.de/

Abstract. Computed tomography (CT) is the primary imaging modal-
ity for dose estimation in radiotherapy. However, their frequent use can
result in increased radiation exposure to patients, causing potential radiation-
induced complications. In contrast, while magnetic resonance imaging
(MRI) and cone-beam computed tomography (CBCT) provide addi-
tional information crucial for radiotherapy treatment planning, they fail
to provide reliable measures for precise dose calculations. As part of the
SynthRAD 2023 challenge, the goal of this study is to develop and eval-
uate a method for translating MR and CBCT images to conventional
CT images, allowing for accurate dose calculations without the need for
additional CT acquisitions. Within the context of this study, we pro-
pose a multi-planar convolutional neural network, which projects the 3D
volumes into 2D slices across the axial, sagittal, and coronal views, and
subsequently predicts separate CT images for each view that are fused in
a later stage. Preliminary results show that multi-planar fusion enhances
CT image quality considerably as compared to single-plane predictions.
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1 Introduction

Medical imaging has witnessed remarkable growth in recent years, especially in
its capacity to diagnose and treat cancer patients. Computed tomography (CT)
stands out as a foundational tool in radiotherapy, offering unparalleled insights
into patient anatomy and facilitating accurate dose calculations via electron den-
sity conversion. Cone Beam CT (CBCT), a more recent variation of traditional
CT imaging, has also gained traction in the radiotherapy realm, becoming a
go-to choice for image-guided adaptive radiation therapy (IGART). However,
CBCT is susceptible to severe artifacts and distortions which can compromise
image quality, making it less reliable for precise dose calculations, a crucial as-
pect of radiotherapy. Moreover, both CT and CBCT imaging expose patients
to high-energy radiation that can lead to unintended tissue damage. Especially
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in radiotherapy, where patients may undergo such procedures on multiple occa-
sions, cumulative radiation exposure can become significant.
Magnetic resonance imaging (MRI) holds the promise to provide physicians with
more accurate tumor delineation due to its increased soft-tissue contrast, with-
out compromising patients’ health due to increased radiation exposure.

Although MRI and CBCT imaging each offer unique insights, essential for effec-
tive radiotherapy, their limitations in delivering crucial information on radiation
doses constrain their application. This has prompted increased research into deep
learning techniques, as potential solutions to bridge this gap. Notably, genera-
tive deep learning models are being harnessed to produce synthetic CT images
by leveraging existing MRI or CBCT imaging data. These synthetic CT images
aim to approximate the radiation dosimetry properties of conventional CT scans,
offering the potential to improve radiotherapy treatment planning without the
need for additional CT imaging.

To further promote research in this direction, the SynthRAD 2023 challenge [1]
was initiated. By providing researchers with datasets containing paired MRI-CT
and CBCT-CT images, the objective is to develop machine learning models that
allow 1) the conversion of MR to CT images, facilitating MRI-only radiation
therapy, and 2) the conversion of CBCT to CT images, enabling CBCT-only
IGART. In this study, we present our approach, designed for performing the
aforementioned image-to-image conversions, that was developed in the context
of the SynthRAD 2023 challenge.

2 Materials and Methods

2.1 Dataset

We trained and evaluated our models using the publicly available data from the
SynthRAD 2023 challenge [1]. This data encompasses two distinct tasks: Task 1
provides 180 brain and 180 pelvis MRT-CT paired images, while task 2 provides
180 brain and 180 pelvis CBCT-CT paired images. In addition, each MR-CT
and CBCT-CT pair is supplemented with an additional binary mask, roughly
outlining the location of the brain and pelvis, respectively.

2.2 Preprocessing

Prior to inputting the images into the neural network, several preprocessing steps
were performed. For MR images, we first clipped the signal intensity to the 99th
percentile of values within the area delineated by the binary mask. Subsequently,
each MR image was individually normalized to a range between -1 and 1. In the
case of CBCT images, the signal intensity was adjusted by shifting all values by
the minimal value present in the image, clipping its range between 0 and 3000,
and then scaling each image from -1 to 1. For CT images, the signal intensity
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was clipped between -1024 and 3000. Afterwards, based on the clipped range
(-1024 to 3000), the images were rescaled to fall between -1 and 1. Lastly, all 3D
images were divided into slices across the axial, coronal, and sagittal planes and
stored as 2D images.

2.3 Architecture

The multi-planar approach consisted of three identical fully convolutional neu-
ral networks (see Figure 1), employing a symmetric encoder-decoder design.
Each network featured an input layer with 64 channels, followed by three down-
sampling layers having 128, 256, and 512 channels respectively. The bottle-
neck layer, i.e., the point of highest compression, comprised 9 convolutional
layers, each with 512 channels. Subsequent to the bottleneck layer were three
up-sampling layers with transposed convolutions, followed by an output layer.

2.4 Training

The dataset of each task and anatomical region (n=180 images) was split into
a training (n=162) and validation set (n=18) with a 9-to-1 ratio. Images were
padded to a size divisible by 8 before feeding them into the neural network. The
network’s predictions were then cropped back to match the original input size.
The training process was conducted separately for both tasks 1 and 2, as well
as for predicting the brain and pelvis regions.

To supervise the training, the sum over the resulting Mean Absolute Error
(MAE), Structural Similarity Index Measure (SSIM), and Learned Perceptual
Image Patch Similarity (LPIPS) between the synthetic CT and ground truth
CT images were used as the loss function. This loss function was computed
and averaged at both the full and half output resolutions. Importantly, the loss
computation was confined to the masked region. To further refine the images
according to the challenge metrics (i.e., MAE, SSIM, and PSNR), we decided
to conduct additional epochs of fine-tuning on the neural network, omitting the
LPIPS loss component.

To update the weights and minimize the loss, the AdamW optimizer with a
learning rate of α = 10−4 was employed. Moreover, an early stopping criterion
was employed, which terminated the training process once the average over the
SSIM and MAE losses did not decrease over five consecutive epochs.

2.5 Inference

For inference, the 3D input images were divided into individual slices along the
axial, coronal, and sagittal planes. These slices were then sequentially input into
the model and later concatenated along their respective planes to form a 3D
volume. As outlined in section 3.2, test-time augmentation was applied to each
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of the images prior to inputting them into the model, and the resulting predic-
tions were averaged together. In the final step, the 3D volumes corresponding to
the axial, sagittal, and coronal predictions were averaged to arrive at the final
prediction for the synthetic CT.

3 Results & Discussion

3.1 2D Axial, Coronal, and Sagittal Predictions

On our internal validation set, we observed comparable MAE and SSIM out-
comes among the predictions for the brain region in task 1 across the axial,
coronal, and sagittal planes (Table 1). This is in contrast to the plane predic-
tions for the pelvis region in task 1, where the axial plane displayed superior
MAE and SSIM scores compared to the coronal and sagittal planes. The dispar-
ity was likely attributed to the anisotropic voxel spacing (1 × 1 × 2.5mm) that
we encountered when observing the images of the pelvic region. Due to the im-
pending deadline of the SynthRAD 2023 challenge on October 22, 2023, further
assessments in the coronal and sagittal planes were not pursued.

Table 1. Results on the validation set. NA = Not available.

Task 1 Task 2

Brain Pelvis Brain Pelvis

MAE SSIM MAE SSIM MAE SSIM MAE SSIM

2D Axial 73.9 0.92 54.1 0.87 55.9 0.94 59.9 0.85
2D Coronal 75.4 0.92 62.3 0.84 58.5 0.93 NA NA
2D Sagittal 72.1 0.92 62.9 0.84 59.2 0.93 NA NA

3.2 Test-Time Augmentation

We applied test-time augmentation to our models to increase the predictive per-
formance. This procedure involved horizontal and vertical flipping of the input
images before feeding them through the model and subsequently applying the
inverse transformation on the output. The resulting images were then aggregated
by averaging the voxel values over all images. When test-time augmentation was
implemented, we observed an improvement in performance across all examined
planes, tasks, and regions, reflected by a reduction in the MAE by approximately
-2 (see Table 2).

3.3 Checkpoint Ensemble

During the training process, the model weights corresponding to the best three
checkpoints as measured by the lowest validation loss were retained. These check-
points were leveraged in an ensemble, in which the predictions of the models were
averaged. This led to a reduction in the MAE score by about 0.5 (see Table 3).
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Table 2. Results on the validation set with test-time augmentation. NA = not avail-
able.

Task 1 Task 2

Brain Pelvis Brain Pelvis

MAE SSIM MAE SSIM MAE SSIM MAE SSIM

2D Axial 70.7 0.924 51.9 0.866 53.6 0.940 58.8 0.855
2D Coronal 70.3 0.925 NA NA 55.7 0.937 NA NA
2D Sagittal 68.8 0.926 NA NA 60.2 0.922 NA NA

Table 3. Results on the validation set after ensembling. NA = not available.

Task 1 Task 2

Brain Pelvis Brain Pelvis

MAE SSIM MAE SSIM MAE SSIM MAE SSIM

2D Axial 69.5 0.926 51.4 0.867 52.6 0.941 57.4 0.860
2D Coronal 68.2 0.928 NA NA 55.3 0.938 NA NA
2D Sagittal 67.4 0.929 NA NA 56.0 0.937 NA NA

3.4 Multi-Planar Ensemble

To quantify the performance gain when employing the multi-planar approach,
the mean signal intensities of the 3D CT predictions from the axial, sagittal, and
coronal plane predictions were computed. We observed that the quality of the
brain region improved in both MAE and SSIM, while the quality of the pelvis
region diminished (see Table 4).

Table 4. Results on the validation set after fusing the axial, sagittal, and coronal plane
predictions. NA = not available; (*) Without test-time augmentation.

Task 1 Task 2

Brain Pelvis Brain Pelvis

MAE SSIM MAE SSIM MAE SSIM MAE SSIM

Multi-planar 64.4 0.933 53.6(*) 0.862(*) 51.4 0.944 NA NA
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Fig. 1. Network Architecture


