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1 Method 

1.1 Overview 

In the report, we introduce our method for both task 1 and task 2 of the SynthRAD 

challenge. Because the challenge dataset [1, 2] consists of multi-modality (MR and 

CBCT), multi-region (brain and pelvis), and multi-site (sites A, B, and C) images, we 

design our algorithms to be modality/anatomy/site (MAS)-specific to avoid the poten-

tial issue of domain shift. We first develop two independent MAS-specific solutions 

(we name them “solution #1” and “solution #2” for simplicity) in parallel to generate 

synthetic CTs (sCTs). At inference time, the algorithm is only provided with the in-

formation of the modality (MR or CBCT) and the anatomical region (brain or pelvis) 

but not the site (A, B, or C) of the image. We design an uncertainty-based algorithm 

to predict the source site of the input image, then we use the model belonging to the 

predicted site to generate the sCT. The final output is the ensemble (average) of the 

sCT predictions from the two independent MAS-specific solutions. In the sections 

below, we describe the two MAS-specific solutions and how we integrate them using 

our site-prediction algorithm as our final solution. 

1.2 MAS-specific solution #1 

In this solution, we train one CT synthesis deep learning (DL) model per MAS, result-

ing in 11 models in total (pelvis MR data only have two sites: A and C). We only use 

data from the corresponding MAS to train each model. We adopt a 3D version of the 

pix2pix conditional GAN (cGAN) [3] as our network architecture. It consists of a 

generator and a discriminator. The generator is a 3D encoder-decoder network with 

nine residual blocks in the bottleneck, and the discriminator D is a five-layer 3D CNN 

based on PatchGAN [3]. At inference time, we use the DL model that corresponds to 

the specific MAS to predict the sCT (the site information is predicted by the algo-

rithm described in Section 1.4). 

Multiple loss terms are used to train the network. The discriminator is trained to 

classify fake or real CTs using a cross-entropy loss, and the adversarial loss for the 
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generator is denoted as 𝐿𝑎𝑑𝑣
𝐺 . To further regularize the generator to generate accurate 

sCTs, as suggested in [3], we use the L1 distance between the real CT (rCT) image 

and the sCT image as the reconstruction loss, which is denoted as 𝐿𝐿1
𝐺 . We also use an 

edge-aware loss 𝐿𝑒𝑑𝑔𝑒
𝐺  to help improve the quality of the sCT [4, 5]. It is calculated as 

the L1 distance of edge maps (extracted by a 3D Sobel edge detector) between the 

rCT and sCT. Furthermore, we add two additional loss terms to make the loss focus 

more on the regions inside the body mask (provided by the challenge) and the bone 

mask (obtained by thresholding the rCT image and then by morphological opera-

tions), denoted by 𝐿𝑏𝑜𝑑𝑦
𝐺  and 𝐿𝑏𝑜𝑛𝑒

𝐺 . We calculate these two losses by repeating the L1 

reconstruction loss and the edge-aware loss inside the masks. To summarize, the total 

loss for the generator can then be expressed as: 

 

𝐿𝑡𝑜𝑡𝑎𝑙
𝐺 = 𝜆1𝐿𝑎𝑑𝑣

𝐺 + 𝜆2𝐿𝐿1
𝐺 + 𝜆3𝐿𝑒𝑑𝑔𝑒

𝐺 + 𝜆4𝐿𝑏𝑜𝑑𝑦
𝐺 + 𝜆5𝐿𝑏𝑜𝑛𝑒

𝐺 , (1) 

where, 

𝐿𝑏𝑜𝑑𝑦
𝐺 = 𝜆2𝐿𝐿1body

𝐺 + 𝜆3𝐿𝑒𝑑𝑔𝑒𝑚𝑎𝑠𝑘

𝐺 , (2) 

and 

𝐿𝑏𝑜𝑛𝑒
𝐺 = 𝜆2𝐿𝐿1bone

𝐺 + 𝜆3𝐿𝑒𝑑𝑔𝑒𝑏𝑜𝑛𝑒
𝐺 , (3) 

𝜆1, 𝜆2, 𝜆3, 𝜆4, and 𝜆5 are empirically set as 1, 10, 1, 10, 1, respectively. 

1.3 MAS-specific solution #2 

In this solution, we train one unified DL model with dynamic convolution (DC) layers 

[6–8] that are conditioned on the MAS. Different from solution #1, the model is 

trained with all the data from different modalities, regions, and sites. The network 

architecture is the same 3D pix2pix as described in solution #1, but the first two and 

last two convolutional layers are replaced with DC layers. The parameters of the DC 

layers are generated by a multilayer perceptron (MLP) and conditioned on the binary 

code that corresponds to the specific MAS. At inference time, we provide the binary 

code to the CT synthesis network so that the parameters of the network can be adap-

tive to the MAS. We use the same loss function configuration as the one introduced in 

solution #1. 

1.4 Site-prediction algorithm and final output of our method 

At inference time, only the modality (MR in task 1 and CBCT in task 2) and the ana-

tomical region (brain and pelvis) are provided by the organizers as additional infor-

mation to the image. Our MAS-specific solutions #1 and #2 cannot work optimally 

without the correct site information. We thus design a simple uncertainty-based algo-

rithm to predict the site of the input image. To demonstrate our algorithm, we use an 

input image that comes from site A as an example. We assume that this image (from 

site A) is considered to be the out-of-distribution (OOD) data for the models that are 

trained/designed exclusively for site B or site C, thus the uncertainty of model from 

site B or site C will be higher than the uncertainty of the model from site A. We 

measure the uncertainty by calculating the mean absolute error (MAE) between the 



MAS-specific solutions #1 and #2 introduced above, and we select the site with the 

lowest MAE as the predicted site. This algorithm is shown in Fig. 1. 

We then use the MAS-specific models (from solutions #1 and #2) that correspond 

to the predicted site to generate sCT. Since we find that solutions #1 and #2 have 

similar performance in the validation phase of the challenge, we use the ensemble 

(average) of sCT generated by the two independent solutions as the final output of our 

method. 

 

Fig. 1. An illustration of the site-prediction algorithm. We use an input image from site A as an 

example. 

1.5 Training details 

We implement our method using PyTorch and MONAI. For all the models in solu-

tions #1 and #2, we use the same learning rate of 2e-4. We split the provided dataset 

into 90% for training and 10% for model validation. The best epoch for each model is 

selected based on the MAE on the validation set. Data augmentation used in training 

includes random affine transformation, random left-right flipping, random Gaussian 

noise, random bias field (for MR images), and random contrast adjustment. We do not 

change the original voxel size of each image. Due to the GPU memory size, the net-

works can only take cropped patches as input. During training, all the brain images in 



4 

solution #1 are randomly cropped into 128×128×128, and all the pelvis images are 

randomly cropped into 256×128×64. All the images in solution #2 are randomly 

cropped into 192×192×128. 
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