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Abstract. The impact of medical imaging on oncological patients’ di-
agnosis and therapy has grown significantly over the last decades. Es-
pecially in radiotherapy (RT), imaging plays a crucial role in the entire
workflow, from treatment simulation to patient positioning and moni-
toring. Thus, we proposed a self-pretraining paradigm for handling some
unpaired problems. Then, we fintune the pretrained model on the paired
dataset and achieve good performance. A gradual training schedule is
also adopted in this method. Specifically, our method could be achieved
by following steps: 1) Self-supervised pertaining with masked images. 2)
Gradually fintuning with different losses on paired CBCT-CT dataset.
3) Weighted ensemble for different types of models. Experiments on Syn-
thRAD Challenge dataset show that our method is effective.
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1 Introduction

Cone-beam computed tomography (CBCT) images are widely used in image-
guided radiotherapy (IGRT), however its clinical application is limited due to
the low image quality. The synthesis of Computed Tomography (CT) images
from Cone-Beam Computed Tomography (CBCT) scans has gained significant
attention in medical imaging research. Recent advances in deep learning tech-
niques have shown promising results in generating high-quality CT images from
low-dose CBCT scans. In this study, we aim to explore the effectiveness of pre-
training a Masked Auto-Encoder[1] (MAE) using the SwinIR[2] architecture for
translating CBCT image to synthetic CT (sCT) image that preserves both CT
image quality and CBCT anatomical.



2 Runqi Wang et al.

Pe
vi
s

B
ra
in

CBCT CT Mask

Fig. 1. Synthesis CT needs to preserve both CT image quality and CBCT anatomical

2 Method

We proposed a Swin Transformer synthesis network based on masked autoen-
coder pertaining paradigm. Also, a global feature branch is introduced to better
capture the global features of the image, thereby guiding image synthesis. So,
we divide this section into three parts: masked autoencoder, swin transformer
and group propagation block.

2.1 Masked Autoencoder

Recently, MAE has gained recognition as a highly effective strategy for self-
supervised learning in diverse computer vision applications. It is specifically
designed to learn meaningful representations from input data and generate high-
quality output images. The masked autoencoder consists of an encoder and a
decoder, which work together to reconstruct the input images while learning a
compressed representation in the middle. The masked autoencoder architecture
is flexible and can be adapted to different medical image synthesis tasks, includ-
ing CBCT to CT synthesis. By training the model on a large dataset of paired
medical images, the masked autoencoder can learn to generate high-quality syn-
thetic images that closely resemble the ground truth images. This technique
has shown promising results in various medical imaging applications, including
image denoising, super-resolution, and image synthesis.
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Fig. 2. Our initial pipeline for CT synthesis. Further, we also apply SwinV2 architec-
ture and add a global branch for capturing the global features.

2.2 SwinIR

The Swin transformer has innovatively incorporated hierarchical attention with
shifted windows, enabling the fusion of contextual information while mitigating
the computational burden. Among its notable applications in the domain of low-
level vision, SwinIR[2] stands out. Figure 2 visually illustrates the architecture,
comprising multiple convolutional blocks and Swin transformer modules. Specif-
ically, for a Swin transformer module, an input token sequence T ∈ Rb×w×n×do

is first layer-normalized (LN). Here b is the batch size, w is the window number,
n is the number of tokens, and do is the token embedding dimension.

2.3 Group Propagation Block

Apart from SwinV2 architecture[4], we also try to apply group propagation
blocks [3] into our Swin Transformer.In each GP block, the features are first
grouped by a fixed number of learnable group tokens; then the group is propa-
gated to exchange global information between the grouped features; finally, the
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global information in the updated grouped features is returned to the image fea-
ture through the converter decoder. For the GP Block module, image features
are grouped with a fixed number of learnable group tokens. Then use the MLP-
Mixer module to exchange global information and update the characteristics of
the grouping. Next, the grouped features are queried and connected in series with
the image features to pass the global information to each image feature. Finally,
the updated image features are converted through the feedforward network to
generate output.

2.4 Loss Function

The loss functions of our methods are constructed by a gradual scheduler. Specif-
ically, in the first stage, the L1 loss is used with the learning rate of 1× 10−4 .
Data augmentation includes the horizontal flip, the vertical flip, and the rota-
tion with 90 degrees. In the second stage, the MSE loss with a learning rate of
2×10−5 is applied. Finally, the perceptual loss is adopted, and the learning rate
is set to 1× 10−5.

3 Experiments

3.1 Datasets

We only use the synthesizing computed tomography for radiotherapy challenge
(SynthRAD 2023) dataset to evaluate the efficiency of our method. The following
pre-processing steps were performed on the data: 1. Conversion from dicom to
compressed nifti. 2. Rigid registration between CT and CBCT. 3. Anonymization
(face removal, only for brain patients). 4. Patient outline segmentation (provided
as a binary mask). 5. Crop MR/CBCT, CT and mask to remove background
and reduce file sizes.

Table 1. The number of subjects in each phase.

Subdataset Center-A Center-B Center-C
Training set 60 60 60
Validation set* 10 10 10
Test set* 20 20 20

3.2 Experiment Settings

All experiments in this section are performed on Ubuntu 20.04.5 LTS, with
Intel(R) Xeon(R) Gold 6330 CPU @ 2.00GHz. All models are run with NVIDIA
GeForce RTX 3090 using PyTorch. Here’re some experiment settings:

During pretraining, the batchsize is 24, masked patch size is 8 with 75%
masked rate. The model depths for the SwinIR are [6, 6, 6, 6, 6, 6] with 180
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embedding dimensions. During finetuning, the batchsize is 16 with cropping.
The crop size is set to 160. We use Adam optimizer with a 1e-4 learning rate. All
the models are trained with 100 epochs. After obtaining the results of different
models, we first calculate the mean value of each output. We use the difference
between each output and the mean value to get the weight of the corresponding
output. Then, we norm the weight to ensemble all outputs.

3.3 Metrics

The metrics measuring the accuracy of the algorithm are masked Peak Signal-
to-Noise Ratio (PSNR), Mean absolute error (MAE), and Structural similarity
index (SSIM) between sCT and CT.

MAE =
1

n

n∑
i=1

|CTi − sCTi| (1)

where n is the number of voxels in the mask.

PSNR = 10 log10

(
Q2

1
n

∑n
i=1 (CTi − sCTi)

2

)
(2)

where n is the number of voxels in the mask, and Q is the typical range of voxel
intensities in the CTs (3000 HU).

SSIM =
(2µCTµsCT + C1) (2δ + C2)

(µ2
CT + µ2

sCT + C1) (δ2CT + δ2sCT + C2)
(3)

where µ is the mean pixel value, δ is the variance . C1 = (0.01Q)2 and C2 =
(0.03Q)2 are two variables to stabilize the division with weak denominators,
where Q is the typical range of voxel intensities in the CTs (3000 HU).

Fig. 3. The reconstruction visualization of pretrained model.
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Table 2. PSNR, SSIM, MAE scores with different experiments

PSNR ↑ SSIM ↑ MAE ↓
A) CNN-baseline 26.27 0.8402 60.34
B) SwinIR-baseline 27.37 0.8607 55.88
C) Adjust some parameters 27.40 0.8642 55.76
D) SwinV2 and global branch 27.43 0.8649 55.03
E) Ensemble 27.89 0.8650 54.84
F) Weighted Ensemble 27.89 0.8670 54.54

3.4 Results

In this part, we’ll present the performance on synthrad challenge and visualize
our results of synthesized CT (sCT). In Fig.3 we can see that the model has
strong reconstruction ability after self-supervised pertaining. Thus, it may ben-
efit solving unpaired problems using the encoded features. Table 2. shows the
PSNR, SSIM and MAE scores of our methods during this challenge.

Fig. 4. The side-by-side comparison of CBCT, sCT, CT for a validation patient; The
right sub-graph shows the line profile of the red line.

4 Conclusion

In this paper, we investigated the application of a masked auto-encoder pre-
trained SwinIR model for CBCT to CT synthesis. The results demonstrate the
potential of the proposed approach in generating high-quality CT images from
CBCT scans. The proposed method shows promise in capturing relevant visual
features and producing accurate CT images. Further research and refinement of
the methodology could lead to improved CBCT-to-CT synthesis techniques with
significant clinical implications.
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