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Fig. 1. Example of two synthetic CT images (sCT) from the MRI image (input). (Left)
Generated brain image; (Right) generated pelvis. We can see that for both tissues the
algorithms are able to generate synthetic images that resample the original CT image.
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1 Introduction

Medical imaging plays a crucial role in both the diagnosis and treatment of can-
cer patients, especially within the context of radiotherapy (RT). While conven-
tional practice leans on Computed Tomography (CT) scans to identify treatment
areas and determine optimal radiotherapy dosage, the advent of Magnetic Res-
onance Imaging (MRI)-only based RT has emerged as an attractive proposition
due to reduced radiation exposure and enhanced tissue contrast. This approach
can potentially diminish overall treatment expenses, workload, and even rectify
residual registration discrepancies inherent in using both CT and MRI. Never-
theless, a significant challenge delaying the implementation of MRI-only RT is
the absence of tissue attenuation information necessary for precise dose calcula-
tions. Specifically, bones are responsible for significant attenuation, and are not
directly visible in MR. Various methodologies have been proposed to bridge this
gap, including techniques to convert MRI data into CT-equivalent images (i.e.,
synthetic CT (sCT)) for precise treatment planning and dose computation. In
response to this methodological challenge, the first task of the Synthrad 2023
challenge consisted of generating synthetic CT from given MRI scans. This re-
port provides an overview of the two methods we employed in generating sCT:
a latent diffusion model [6] with Controlnet [9] for brain images and a Pix2Pix
model [3] for pelvis images.

2 Methods

We used the provided dataset by the Synthrad2023 competition [7], consisting
of pelvis and brain images. Within this dataset, the competition organizers pro-
vided aligned CT and MRI images that we used to train the models. For a
detailed description of the dataset, refer to [8].

Our method used different models; while a latent diffusion model (LDM)
was used to generate brain images, a Pix2Pix model was used for the pelvis. We
opted for distinct models due to variations in image sizes. As many pelvis images
were excessively large to be processed effectively on the competition’s provided
hardware, we employed a more lightweight model for them.

2.1 Brain: Latent Diffusion Model

Diffusion Models [2] leverage an iterative denoising process to transform Gaus-
sian noise into samples from a learned data distribution. However, training dif-
fusion models can be very memory- and computationally intensive, therefore,
applying diffusion models to latent representations allows for a better scalability
and enables their use for high-dimensional data tasks, like 3D medical images.

This is why for this challenge, we used (1) an autoencoder to compress the
input data into a lower-dimensional latent representation, (2) used the generative
modeling properties of diffusion models in the latent space, and (3) conditioned
the generative process using another image with a ControlNet (Figure 2). We
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trained the autoencoder with a combination of L1 loss, perceptual loss [10], a
patch-based adversarial objective [1], and a KL regularization of the latent space.
The encoder maps the brain image to a latent representation with a size of 48×
48× 48, which was then used as the diffusion model input. We also conditioned
the generated CT with an MRI image during training using a ControlNet [9]. The
ControlNet acted as a tool to guide and adjust the synthesis based on specific
spatial and structural constraints. This facilitated the generation of images that
closely adhered to desired spatial arrangements and structural configurations,
allowing for a finer level of control over the final output.

1st Stage:	Learn	Latent	space

2nd Stage:	Learn	DM

3rd Stage:	Learn	“copy”	of	DM

Zero	Convolution

Fig. 2. The latent diffusion model consists of three steps: (1) we train an autoencoder
with KL-loss to obtain a latent representation of the image; (2) then we train a Diffusion
model using the latent space (z) obtained from the autoencoder; (3) finally, we train
a ControlNet on top of the Diffusion model to control the generation of the fine grain
details, by mapping the initially provided MRI image to the desired CT image.

We used the models and losses provided by the new MONAI Generative
Models framework [5], an open-source platform that allows researchers to quickly
train, develop, and evaluate generative models for medical imaging purposes.
Our experiments followed the work from [4], as we used an LDM to generate
high-resolution synthetic images.

2.2 Pelvis: Pix2Pix

In computer vision imaging, the Pix2Pix technique [3] stands as a powerful
tool for translating between image domains. Employing a conditional genera-
tive adversarial network architecture, Pix2Pix has gained prombachinence for
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its ability to learn the intricate mapping between input and output images in
paired datasets. By training the model on a dataset of 3D aligned pairs, each
consisting of an MRI and its corresponding CT image, we enable Pix2Pix to
learn the intricate relationships between these two modalities.

1 1 1
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Fig. 3. A paired MRI-CT dataset is used to train a Pix2Pix model to transform MRI
into CT scans. During training, the input image is processed through a U-Net ar-
chitecture. The training process involves utilizing an L1 loss function, measuring the
pixel-wise disparity between the synthesized CT scan and the actual ground truth CT
scan. Simultaneously, an adversarial loss function is incorporated to ensure that the
generated CT scan is realistic and indistinguishable frombach a real CT scan. In the
image, the orange square represents which parts of the patch the discriminator identi-
fies as real or fake, this information is then used to update the weights of the network.

The heart of the Pix2Pix architecture lies in the generator-discriminator
interplay. The generator, a U-Net network, learns to convert the structural fea-
tures captured in MRI scans into the characteristic intensity patterns found in
CT scans. It takes as input an MRI slice and produces a synthetic CT image. To
enforce the similarity between the generated CT images and the actual CT scans,
we employ a L1 loss function during training. This loss function quantifies the
pixel-wise differences between the generated and target images, prombachoting
the generation of visually accurate CT representations. In particular, we used
the following loss:

L = adversarial loss + βL1(xtrue, xgen), (1)

where we weight the L1 loss (using a scaling factor β - we choose β to be 100)
relative to the adversarial loss.
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The discriminator network, employing a patch-based approach with a patch
size of 9 × 9, provides feedback to ensure the generated CT-like images look
realistic. This patch-based discriminator analyzes local patches of the generated
CT scan and the corresponding real CT scan to guide the generator’s learning
process. The synergy of the L1 loss and the discriminator’s adversarial training
contributes to improved results. Notably, while the L1 loss ensures global struc-
tural coherence, the discriminator improves fine details and texture synthesis,
aspects that are often lacking when using the L1 loss in isolation.

Through an iterative adversarial training process with a batch size of one,
chosen due to the large memory requirement for 3D pictures, and a learning rate
of 1e-3, the model refines its ability to generate high-quality CT-like represen-
tations frombach MRI scans.
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