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1 Introduction

Recent developments in computer vision have proposed the use of attention-based transformer models for
a variety of tasks including classification and segmentation, by separating images patch-wise into a series
of input tokens [1]. Whilst such models have shown excellent performance in both natural images and in
the medical domain due to a supposed ability to better model long-range interactions over a standard
convolutional neural network (CNN), they are often hampered by expensive scaling laws in their attention
mechanism. Further, the lack of any inductive bias towards local interactions, and the flattening of an image
to a 1D vector of patches, has potential to reduce efficiency in their ability to learn on data in the vision
domain. To combat this, a number of window-based mechanisms have been proposed [9]. These have been
shown to improve over standard attention in medical image segmentation [5]. However, such methods still
add a large amount of computational overhead compared to existing CNNs.

A recently proposed alternative to windowed attention is large-kernel attention (LKA) [4], where a large-
kernel convolution is made feasible by decomposing the transform into a series of convolutions. As shown in
Figure 1, this is achieved by a series of a depth-wise convolution (DWConv), a dilated depth-wise convolution
(dDWConv) and a pointwise convolution (PConv). Results on natural images have indicated that this method
both attains greater accuracy than other vision models, and has a favourable accuracy-efficiency tradeoff
when compared to the Swin architecture.

Fig. 1. Large-kernel attention mechanism, showing a 72 kernel decomposed into a 32 depth-wise convolution (DW-
Conv), a 32 depth-wise convolution with dilation= 2 (dDWConv) and a pointwise convolution (PConv). Figure
reprinted from [4].

2 Methods

In our method, the LKA module was incorporated into the encoder of a U-Net architecture, with an encoder
containing 6 blocks of channels (32, 64, 128, 256, 320, 320). Each layer’s LKA unit is used in a similar
method to the Visual Attention Network (VAN) architecture [4], with the LKA output multiplied by the
input to complete the attention unit, a GELU activation [6] applied prior, and PConv layers applied at
the beginning and end of the unit. Each block contains a sequence of ×2 downsampling, LKA unit and
convolutional feed-forward unit [12], with a residual connection after and a batch normalization before both
the LKA and feed-forward units. Each LKA unit uses an equivalent kernel size of 213, comprising a 53

DWConv, a 73 dDWConv with dilation= 3 and a standard PConv. All U-Net stages contained a single LKA
block, except for the second lowest which contained two blocks. The decoder follows the standard U-Net
layout, with a kernel size of 33 at each stage.
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3 Experiments

For each subject, the raw image was resliced to 1 mm3 resolution, skull-stripped using Robex [7] and bias-
corrected using the SimpleITK [10] implementation of N4 [11]. Data was resliced to 1mm3 and cropped to the
brain foreground using MONAI∗. In training, the DALI library† was used for loading with augmentations
following the winner of the BraTS 2021 competition [2] to produce an augmented crop of size 1283. An
additional augmentation was used, with 50% of batches having a copy-paste [3] augmentation applied to add
additional lesions, with the foreground and background blended using a gaussian filter. 5 models were trained
using 5-fold cross validation in a split of 524 training and 131 validation samples. A combination of Dice
and cross entropy loss were used, and optimized using the Apex‡ implementation of Adam with a learning
rate of 0.0002 and a batch size of 3 for 1, 000 epochs. Deep supervision was used to calculate additional
loss components for the low-resolution segmentation predictions at the decoder layers of channels 32 and 64,
with weightings of 1

2 and 1
4 respectively. All training was performed with Auto-Mixed Precision in Pytorch

Lightning§ using an NVIDIA RTX A6000 GPU with 48GB VRAM.
Final inference was performed via an ensemble of the 5 trained models, with test-time augmentation

used for each model’s predictions to average logits over all possible orientations. Inference of the model in
all orientations was performed using a sliding window of size 1283, with an overlap of 0.5 and a gaussian
weighting to merge windowed predictions. Output soft probabilities were then averaged across all models.
The resulting likelihood map was resliced to the original DWI image’s resolution and then further refined
using a Conditional Random Field (CRF)[8], hole filling and removal of small objects.
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8. Krähenbühl, P., Koltun, V.: Efficient inference in fully connected crfs with gaussian edge potentials (2012).
https://doi.org/10.48550/ARXIV.1210.5644, https://arxiv.org/abs/1210.5644

9. Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin transformer: Hierarchical vision
transformer using shifted windows (2021). https://doi.org/10.48550/ARXIV.2103.14030, https://arxiv.org/
abs/2103.14030
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