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Abstract—Artificial Intelligence for RObust Glaucoma Screen-
ing (AIROGS) Challenge is held for developing solutions for
glaucoma screening from color fundus photography that are
robust to real-world scenarios. This report describes our method
submitted to the AIROGS challenge. Our method employs con-
volutional neural networks to classify input images to ”referable
glaucoma” or ”no referable glaucoma”. In addition, we introduce
an inference-time out-of-distribution (OOD) detection method to
identify ungradable images. Our OOD detection is based on an
energy-based method combined with activation rectification.

Index Terms—Color fundus photography, Glaucoma screening,
Computer aided diagnosis, Out-of-distribution detection, Deep
neural networks

I. INTRODUCTION

Early detection of glaucoma can avoid visual impairment,
which could be facilitated through screening. Artificial in-
telligence (AI) could increase the cost-effectiveness of glau-
coma screening, by reducing the need for manual labor. AI
approaches for glaucoma detection from color fundus pho-
tography (CFP) have been proposed and promising at-the-lab
performances have been reported. However, large performance
drops often occur when AI solutions are applied in real-world
settings. Unexpected out-of-distribution data and bad quality
images are major causes for this performance drop.

Artificial Intelligence for RObust Glaucoma Screening
(AIROGS) Challenge [1] is held to develop solutions for
glaucoma screening from CFP that are robust to real-world
scenarios.

This report describes our method submitted to the AIROGS
challenge. Our method employs convolutional neural networks
to classify input images to ”referable glaucoma” or ”no
referable glaucoma”. In addition, we introduce an inference-
time out-of-distribution (OOD) detection method to identify
ungradable images. Our OOD detection is based on an energy-
based method combined with activation rectification.

II. OVERVIEW OF AIROGS CHALLENGE

In this challenge, the Rotterdam EyePACS AIROGS dataset
is used [2]. This dataset contains 113,893 color fundus images
from 60,357 subjects and approximately 500 different sites
with a heterogeneous ethnicity. All images is assigned by
human experts with the labels of referable glaucoma, no
referable glaucoma, or ungradable.

The training set provided by the organizers only consists of
gradable images and ungradable images are excluded. In the
test set, however, both gradable and ungradable images are
included. Hence, the ungradable images cannot be used in the
training phase.

For each input image, the following four outputs are ex-
pected; a likelihood score for referable glaucoma, a binary
decision on referable glaucoma presence, a binary decision on
whether an image is ungradable, and a scalar value that is
positively correlated with the likelihood for ungradability.

III. PROPOSED METHOD

A. Overview

Our method employs convolutional neural networks to clas-
sify input images to ”referable glaucoma” or ”no referable
glaucoma”. In addition, we introduce an inference-time OOD
detection method to identify ungradable images. Our OOD
detection is based on an energy-based method combined with
activation rectification. We will explain the details of the
proposed method in the following sections.

B. Classification

We employ ResNet-RS [3] for the classifying color fundus
images to ”referable glaucoma” or ”no referable glaucoma”.
Since it is two class classification, a single linear layer with
two channel output is attached at the end of the network
instead of the final linear layer of ResNet-RS.

C. Out-of-distribution Detection

Our inference-time OOD detection is based on an energy-
based method [4] combined with activation rectification [5].
The energy-based method uses a scoring function based on
energy, instead of softmax, to discriminate in-distribution (ID)
and OOD data. In the activation rectification, the outsized
activation of a few layers can be attenuated by rectifying the
activations at an upper limit. After rectification, the output
distributions for ID and OOD data become much more well-
separated. It is based on the observation that the mean acti-
vation for ID data is well-behaved with a near-constant mean
and standard deviation, and the mean activation for OOD data
has significantly larger variations across units and is biased
towards having sharp positive values.



We consider a pre-trained neural network parameterized by
θ, which encodes an input x to a feature vector. We denote the
feature vector from the penultimate layer of the network by
h(x) ∈ Rm. The activation rectification operation is applied
to the feature vector as:

h̄(x) = min(h(x), c),

where the operation min is applied element-wise and c is
the activation threshold. The model output after the activation
rectification is given by:

f̄(x; θ) = WT h̄(x) + b,

where W and b are the weight matrix and the bias vector of
the last layer of the network. The energy of the model output
is given by:

E(x; f̄) = −T · log
K∑
i

ef̄i(x;θ)/T ,

where T is a temperature parameter and f̄i(x; θ) indicates the
logit corresponding to the i-th class label.

The OOD scoring function is given by:

g(x; τ, f̄) =

{
ID if −E(x; f̄) ≥ τ ,
OOD if −E(x; f̄) < τ ,

where τ is the energy threshold. And we define the scalar
value that is positively correlated with the likelihood for
ungradability as τ + E(x; f̄).

D. Model Ensemble

We use multiple models as described in the next section.
Each model is trained independently and the inference results
are obtained by ensemble of the outputs from the models. The
final likelihood score for referable glaucoma is obtained by av-
eraging the likelihood scores (softmax) from the models. The
binary decision on referable glaucoma presence is obtained
by thresholding the final likelihood score. The final binary
decision on whether the image is ungradable is obtained by
majority voting of the models. And the final scalar value that
is positively correlated with the likelihood for ungradability is
obtained by averaging the scalar values from the models.

E. Training Procedure

We use 200-layer ResNet-RS pretrained with the ImageNet
dataset [6] for our base network.

As for the preprocessing, the images are cropped and
resized to 256 × 256 pixels and then augmented. We use
shift (maximum shift size is 10 % of the image size), scaling
(0.9 – 1.1 times), rotation (-5 – +5 degrees), color jitter (0.8 –
1.2 times for brightness, contrast, saturation and hue) and
Gaussian blur (the max value of the sigma is 1.0) for the
augmentation. The images are then normalized.

We use the cross entropy loss as the loss function. Since
the dataset is imbalanced (there are much more ”no referable
glaucoma” samples than ”referable glaucoma” samples), the

weights are given depending on the inverse of the frequencies
in the training dataset.

The whole dataset includes 101,442 images. We divide
the dataset into five folds. Five models are trained by using
different combinations of the folds. Four folds are used for
training and the remaining one fold is used for validation.
About 80,000 and 20,000 images are used in training and
validation for each model, respectively.

The optimizer is Adam [7] and the learning rate changes
with cosine annealing. The initial learning rate is 1e-3. The
number of epoch is 90. The model with the highest value in F1
score for the validation dataset is selected as the final model.

The thresholds c and τ are decided by using the validation
dataset for each model. For the activation threshold c, 90-th
percentile of activations estimated on the validation dataset
is used. For the energy threshold τ , 95-th percentile of
energies estimated on the validation dataset is used. We use
the temperature parameter T = 1 .

IV. EXPERIMENTAL RESULTS

The organizers of the AIROGS challenge prepare the pre-
liminary test site to evaluate the performance. The screening
performance is evaluated using the partial area under the
receiver operator characteristic curve (90 – 100 % specificity)
for referable glaucoma and sensitivity at 95 % specificity.
The agreement between the reference and the prediction on
image gradability is calculated by using Cohen’s kappa score.
Furthermore, the area under the receiver operator characteristic
curve is determined using the human reference for ungrad-
ability as the true labels and the ungradability scalar values
provided by the predictions as the target scores.

The results of the preliminary test of our proposed method
were that the screening sensitivity was 0.787, the screening
partial AUC was 0.857, the ungradability kappa was 0.359,
and the ungradability AUC was 0.863,

REFERENCES

[1] [Online]. Available: https://airogs.grand-challenge.org/
[2] “Rotterdam eyepacs airogs train set.” [Online]. Available:

https://doi.org/10.5281/zenodo.5745363
[3] I. Bello, W. Fedus, X. Du, E. D. Cubuk, A. Srinivas, T.-Y. Lin, J. Shlens,

and B. Zoph, “Revisiting resnets: Improved training and scaling strate-
gies,” Advances in Neural Information Processing Systems, vol. 34, 2021.

[4] W. Liu, X. Wang, J. Owens, and Y. Li, “Energy-based out-of-distribution
detection,” Advances in Neural Information Processing Systems, vol. 33,
pp. 21 464–21 475, 2020.

[5] Y. Sun, C. Guo, and Y. Li, “React: Out-of-distribution detection with rec-
tified activations,” Advances in Neural Information Processing Systems,
vol. 34, 2021.

[6] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. Bernstein et al., “Imagenet large scale visual
recognition challenge,” International journal of computer vision, vol. 115,
no. 3, pp. 211–252, 2015.

[7] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in Proc. of the 3rd International Conference for Learning Representations
(ICLR), 2015.


