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Glaucoma is a vision impairing disease of the eye with patho-
logical changes that can be seen on colour fundus photogra-
phy. This paper presents an ensemble method for glaucoma
screening used in the Artificial Intelligence for RObust Glau-
coma Screening challenge. A YoloV5 model was used for optic
disc detection and a subsequent ensemble of convolutional neu-
ral network classifiers was used to identify referable glaucoma
versus non-referable glaucoma. Two autoencoders were used to
estimate ungradability.
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Introduction
Glaucoma is a vision impairing disease of the eye caused by
increased pressure, which leads to characteristic changes on
colour fundus photography. Specifically, the optic cup to disc
ratio and the inferior superior nasal temporal rule are com-
monly used to identify the presence of glaucoma. Both of
these findings can be seen on the optic disc, and therefore, it
is advantageous to first crop the full retinal image to isolate
the optic disc prior to training a classification model [1–3].

Material and Methods
Fig. 1 shows the overall workflow. The full fundus image is
preprocessed to isolate the optic disc, which is then passed
through an ensemble of classifiers to make the final predic-
tion. The full fundus image is also passed through an autoen-
coder to determine ungradability.

Dataset. The models were trained on the official training
dataset provided by the competition organisers: the Rotter-
dam EyePACS AIROGS dataset [4]. The dataset consists
of 113,893 retinal fundus images, of which 101,442 images
were made available to participants as training data and the
remainder were used for competition evaluation. Each train-
ing image is labelled as referable or non referable glaucoma.
For a discussion of the data collection and labelling process,
see the competition website [5]. Five percent of the provided
training data was randomly reserved as a holdout test set for
evaluating classification models. However, the images used
to train the optic disc detection model came from both train-
ing and testing sets. For the purpose of this paper, the testing
data reserved by the competition organizers to evaluate per-
formance is referred to as the submission set. Training, vali-
dation and testing data refer to the partitioning of the training
data provided to participants.

Optic Disc Detection. As the training labels do not contain
information regarding the location of the optic disc, a semi-
automated approach was used to generate labels to train an
optic disc detection algorithm. First, all fundus images were
cropped to 299x299 image size. If necessary, images were
padded to ensure a square aspect ratio. Next, a heuristic algo-
rithm based on Otsu thresholding, and exploiting differences
in colour channels and a priori estimates about the size and
shape of the optic disc was used to draw a loose bounding
box (50% of image width) around the optic disc. The im-
plementation was based on previously published approaches
[6, 7]. As there was no ground truth mask provided, it was
not possible to quantify accuracy, however, the authors es-
timate that the algorithm adequately detected the optic disc
in 80% of images. The authors then manually labelled the
optic disc on 277 processed images with a tight bounding
box. A modified ResNet34 [8, 9] was trained and used to
detect the tight bounding box on 1700 images. The results
were visually inspected, and unacceptably labelled images
were manually relabelled. The resulting correctly labelled
and manually relabelled images were then used to retrain the
ResNet34 model. This process was iterated once more. The
fully trained ResNet34 was used to detect the bounding box
on approximately 4000 images, and the labels were trans-
ferred from the processed images to the original images. Fi-
nally, a YoloV5 [10] model was trained in 20 epochs on the
labelled images for optic disc detection at 288x288 image
size. Of the 4088 images used to train YoloV5, 735 were la-
belled manually. The authors estimate that the YoloV5 model
leads to adequate isolation of the optic disc in >99% of im-
ages.

Fig. 1. Workflow
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Glaucoma Classifier. Five different convolution neural net-
work classifiers were used: SeResNext50, [11, 12] VGG16
[9, 13], DenseNet161, [9, 14] EfficientNetB5 [15, 16], Ef-
ficientNetB7 [15, 16] and InceptionV3 [9, 17]. A dropout
layer was inserted before the last linear layer in all models.
Weights pretrained on ImageNet [18] were loaded for all
models. The models were trained on the optic discs detected
by the YoloV5 model. Positive samples were weighted 30:1
compared to the negative samples corresponding to the distri-
bution within the training data. Hyperparameter tuning was
used to select the optimal last layer dropout, optimizer learn-
ing rate, optimizer weight decay and optimizer momentum
for SGD. Models were trained in two stages, and details about
the training process can be found in the Appendix. Ninety
five percent of the training set was used to train the mod-
els and 5% was used for validation (corresponding to 90.3%
and 4.75% of the total training data provided by the competi-
tion), split randomly. All classifiers were trained in PyTorch
[9]. The first submission consisted of an ensemble of SeRes-
Next50, VGG16, DenseNet161 and EfficientNetB5. In the
ensemble for the second submission, the EfficientNetB5 was
replaced by an EfficientNetB7, and the InceptionV3 model
was added to the ensemble. In the third submission, the only
change was the removal of the VGG16 model from the en-
semble.

Estimating Ungradability. In the first submission, ungrad-
ability was set to the standard deviation of ensemble predic-
tions. The cutoff for converting the continuous standard devi-
ation to a binary prediction of ungradability was chosen to be
the 95th percentile value (0.3). For the second submission,
ungradability (δ) was defined by:

δ = (1− c)∗s∗σ
where c is the confidence in detecting the optic disc provided
by YoloV5, σ is the standard deviation and s is a scaling fac-
tor defined by:

s=
{

2∗y if 0 ≤ y ≤ 0.5
−2∗ (y−1) Otherwise

in which y is the average of all ensemble model predictions.
The cutoff was set to the 99th percentile value (0.075). For
the third submission, an autoencoder and a variational au-
toencoder (VAE) [19] were trained to estimate ungradability.
The autoencoder consists of an encoder with 7 convolution
layers that iteratively halves the dimensions of the input im-
age (256x256) prior to decoding and was trained with 150
epochs. Sample outputs from the autoencoder are shown in
Fig. 2. The VAE consists of a ResNet18 encoder and decoder
[20] with weights pretrained on CIFAR-10 [21] and trained
for 50 epochs. The input image size to the VAE was 256x256.
Ungradability in the third submission was defined by:

δ = (1− c)∗s∗pautoencoder ∗pvae

where pautoencoder and pvae refer to the mean squared error
between the input and output of the autoencoder and VAE
respectively.

Evaluation and Results
The results of the ensemble algorithm is summarized in Ta-
ble 1. The drop in performance metrics in the submission
phase relative to the testing phase indicates the presence of
model overfitting. The addition of the InceptionV3 and the
EfficientNetB7 model increased performance both in the test-
ing phase and the submission phase. The autoencoders out-
performed the standard deviation of predictions at estimating
ungradability. The performance of individual models and the
hyperparameters used to train the final models are shown in
the Appendix.

Fig. 2. Autoencoder reconstructions in validation set. Left to right: Original, 1
epoch, 50 epochs, 150 epochs. Validation loss at 1 epoch, 50 epochs and 150
epochs are 0.01102, 0.001437 and 0.001256 respectively.

Table 1. Summary of Performance Metrics

Submission 1 2 3
Testing pAUC 0.9423 0.9637 0.9654
Testing TPR95 0.9396 0.9732 0.9664
Submission pAUC 0.8735 0.8941 0.8935
Submission TPR95 0.8188 0.8750 0.8875
Ungradability Kappa 0.4043 0.4086 0.3712
Ungradability AUC 0.8335 0.8573 0.8707

Discussion and Conclusion
There was little to no overfitting between the validation phase
and the test phase, and significant overfitting between the test
phase and submission phase. One likely contributing cause to
overfitting is the use of images from all of training, validation
and test phases to train the optic disc detection model. Com-
putational resources was a limiting factor in this competition.
Due to the number of images available in the training data, it
was necessary to train the models on images with smaller di-
mensions (less than 300x300). Using a preprocessing model
to detect the optic disc maximizes the amount of relevant in-
formation that is contained in a small image. The authors
predict that using larger image sizes and training for more
epochs will yield better results.
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Appendix 1
Table A1. Performance of Individual Models

Submission 1 2 3

pAUC

SeResNext 0.8921 0.9348 0.9348
DenseNet 0.9489 0.9489 0.9489
VGG16 a 0.9107 0.9107 -
EfficientNet b 0.8957 0.9547 0.9547
Inception c - 0.9355 0.9355
Mean d 0.9423 0.9637 0.9654

TPR95

SeResNext 0.8523 0.9195 0.9195
DenseNet 0.9530 0.9530 0.9530
VGG16 a 0.9060 0.9060 -
EfficientNet b 0.8523 0.9597 0.9597
Inception c - 0.9262 0.9262
Mean d 0.9396 0.9732 0.9664

a VGG16 was removed in the last submission.
b The B5 variant was used for the first submission and the
B7 for subsequent submissions.
c Inception was not included in the first submission.
d Mean is determined by calculating the metric on the aver-
age of individual predictions.

Table A2. Hyperparameters

SeResNext DenseNet VGG16 EfficientNetB7 Inception a

Stage 1

Image Size 120 120 120 120 299
Epochs 4 4 4 4 10
Optimizer AdamW AdamW AdamW AdamW SGD
Learning Rate 0.000016 0.000018 0.000008 0.000043 0.000003
Dropout 0.0373 0.0828 0.3034 0.1090 0.4383
Weight Decay 0.0014 0.0001 0.0002 0.0008 0.0101
Momentum - - - - 0.776716

Stage 2

Image Size 224 - - 224 -
Epochs b 5 - 5 -
Optimizer AdamW - - AdamW -
Learning Rate 0.000029 - - 0.000036 -
Dropout 0.6702 - - 0.6743 -
Weight Decay 0.0013 - - 0.0032 -
Momentum - - - - -

a Inception was trained in a single stage of 10 epochs.
b The number of epochs in this row refers to the number of subsequent epochs.
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