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Abstract 

Glaucoma is an optic disease with visual impairment, which 
even leads to blindness. The timely diagnosis of glaucoma can 
reserve the blinding process with a good prognosis. In this 
paper, we present a workflow to automatically diagnose 
glaucoma and distinguished fundus images with low qualities. 
The performance in the hidden test set shows the promising 
clinical usefulness against experts. 
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Introduction 
Glaucoma is a group of eye diseases often characterized by 
elevated intraocular pressure. Optic nerve injury results in 
progressive loss of retinal ganglion cell axons, which 
initially manifests as visual field defect and, if untreated, 
eventually progresses to irreversible blindness.[1]  

To facilitate clinicians with rapid and accurate 
computational aided diagnosis, the AIROGS challenge was 
held to exploit solutions based on the color fundus 
photograph. 

The AIROGS challenge 
The Rotterdam EyePACS AIROGS dataset [2] (in full, so 
including train and test) contains 113,893 color fundus 
images from 60,357 subjects and approximately 500 
different sites with a heterogeneous ethnicity. All images 
were assigned by human experts with the labels referable 
glaucoma, no referable glaucoma, or ungradable.  

The provided training set contains approximately 102,000 
gradable images. The hidden test set contains about 11,000 
gradable and ungradable images (both gradable and 
ungradable). 

For each input image during evaluation, the desired output 
is a likelihood score for referable glaucoma (O1), a binary 
decision on referable glaucoma presence (O2), a binary 
decision on whether an image is ungradable (O3, true if 
ungradable, false if gradable), and a non-thresholded scalar 
value that is positively correlated with the likelihood for 
ungradability (e.g. the entropy of a probability vector 
produced by a machine learning model or the variance of an 
ensemble) (O4).  

The screening performance will be evaluated using the 
partial area under the receiver operator characteristic curve 

(90-100% specificity) for referable glaucoma (α) and 
sensitivity at 95% specificity (β). The screening performance 
metrics are based on these specificity ranges, since a high 
specificity is generally desired in screening settings. To 
calculate α and β, we compare output O1 to the referable 
glaucoma reference provided by human experts. 

Using Cohen's kappa score, the agreement between the 
reference and the decisions provided by the challenge 
participants on image gradability, O3, is calculated (γ). 
Furthermore, the area under the receiver operator 
characteristic curve will be determined using the human 
reference for ungradability as the true labels and the 
ungradability scalar values provided by the participants, O4, 
as the target scores (δ). 

Diagnosis workflow of glaucoma 
Manual annotations 

From clinical knowledge, glaucoma can be diagnosed by 
the ratio of optic disk/cup. To force the models’ attention to 
the optic disk area, we manually annotated several images 
to train a not-so-smart segmentation model. 

 We annotated optic disks on 40 images.

 For the convenience of annotation of retina vessel, we
centercropped and resized 40 images to 512x512. The
rough annotations were made on those images.

 For the task of detection of ungradable images, we
manually selected 100 images with relatively poor
image qualities from the provided training dataset.

Basing model training 

 Optic disk segmentation model (Mdisk), we used
resnet101-upernet[3] as the backbone. The batch size
was set to 4 with 100 iterations in each epoch. A total
of 100 epochs with an exponential learning rate
scheduler was applied to the training process.

 Retina Vessel segmentation model (Mvessel), we used
UNet[4] as the backbone. We trained the model with a
total of 10000 iterations with a batch size of 4.

 Both segmentation models above were based on only
40 images (covered only 0.4% of the provided training
dataset), which led to a not-so-satisfying performance.
And it may fail to detect the disk caused by the variety
of image qualities. Therefore, we did not directly apply
the segmentation result to the diagnosis model.



Crop 

Case 1: the disk was successfully detected 

 We used the output of Mdisk to roughly compute the
location and diameter of the optic disk.

 We cropped the image in the disk location with the
image size of 3 times of disk diameters.

 We resized the image to 384 x 384 as the input (Idisk)
of the diagnosis model.

Case 2: the disk was not detected 

 We centercropped the image to remove its black edge
and resized the image to 384 x 384 as the input (Icenter).

Establishment of the diagnosis model 

We adopt the vision transformer (Vit-base with the image 
size of 384) as the classifier backbone.  

The training methods were using a pretraining method 
described as mae[5] (masked auto-encoder). 

Case 1: the disk was successfully detected 

 We toke all Idisk as input to train the VIT model
named Vdisk

Case 2: the disk was not detected 

 As the provided image dataset was of high quality,
only 200 images failed to be detected. Therefore, we
centercropped and resized all images as the input to
train the VIT model named Vcenter

Establishment of the ungradable model 

Here, we defined the image as gradable when the disk 
could be seen in the image with a clear view of the retina 
vessel. 

As we have trained two models (Mdisk and Mvessel) to 
segment the disk and vessel, the only thing need to do was 
to judge whether the retina vessel could be clearly seen. So 
we trained a resnet model, named Rvessel based on the 
segmentation maps.  

The inputs were the vessel segmentation of the first 500 
images in the trained dataset as well as manually selecting 
100 ungradable images. The output of Rvessel was Ovessel. 

The ungradable likelihood was calculated: 

𝑂𝑂4 = 𝑂𝑂𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 + 0.75 × 𝑂𝑂𝑑𝑑𝑑𝑑𝑣𝑣𝑘𝑘 

𝑂𝑂𝑑𝑑𝑑𝑑𝑣𝑣𝑘𝑘 =  � 1,   𝑖𝑖𝑖𝑖 𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖𝑜𝑜 𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑 𝑛𝑛𝑜𝑜𝑜𝑜 𝑏𝑏𝑏𝑏 𝑑𝑑𝑏𝑏𝑜𝑜𝑏𝑏𝑜𝑜𝑜𝑜𝑏𝑏𝑑𝑑
0, 𝑖𝑖𝑖𝑖 𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖𝑜𝑜 𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑 𝑤𝑤𝑤𝑤𝑑𝑑 𝑑𝑑𝑏𝑏𝑜𝑜𝑏𝑏𝑜𝑜𝑜𝑜𝑏𝑏𝑑𝑑 

𝑂𝑂3 =  �1,  𝑂𝑂4 > 0.95
0, 𝑂𝑂4 ≤ 0.95 

Test workflow 

 An image was first run through the Mdisk and Mvessel

and the results is Xdisk and Xvessel.

 Try to automatically calculate the diameter and
location of the optic disk. If error returns Odisk as 1,
else returns Odisk  as 0.

 If Disk was successfully detected. The original Image
was cropped to the disk neighborhood and fed to the
model Vdisk and output O1

 If Disk was not detected. The original image was
centercropped and fed to the model Icenter and Output
O1.

 Xvessel was put into the Rvessel and Output Ovessel.

 Calculate O3 and O4.

Results 
All training processes split 80% data as training dataset 
and 20% data as validation dataset. 
Table 1. performance on the preliminary test phase 

pAUC TPR@95 κ gAUC 
Workflow 0.8948 0.8688 0.6675 0.9589 
Our method showed high performance on the clinical 
task as well as promising distinguishing abilities of 
images of poor qualities. 

Reference 
[1] Weinreb, R.N., et al., Primary open-angle glaucoma. 2004. 363(9422): p.
1711 
[2] “Rotterdam eyepacs airogs train set.” [Online]. 
Available:https://doi.org/10.5281/zenodo.5745363 
[3] Xiao T, Liu Y, Zhou B, et al. Unified perceptual parsing for scene
understanding[C]//Proceedings of the European Conference on Computer
Vision (ECCV). 2018: 418-434. 
[4]Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for
biomedical image segmentation[C]//International Conference on Medical
image computing and computer-assisted intervention. Springer, Cham, 2015:
234-241. 
[5] He K, Chen X, Xie S, et al. Masked autoencoders are scalable vision
learners[J]. arXiv preprint arXiv:2111.06377, 2021. 


	Introduction
	The AIROGS challenge
	Diagnosis workflow of glaucoma



