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Glaucoma is a silent eye disease leading to blindness. Arti-
ficial intelligence models for predicting glaucoma using fundus
photographs have been developed, however, it is important to
evaluate robustness for outliers with high performance to clas-
sify glaucoma. We joined The AIROGS challenge, developed,
and evaluated a multi-modal deep learning model to predict
glaucoma and assess ungradability which is uncertainty for clas-
sifying certain class given images. We achieved 0.7635 for the
partial AUROC, 0.6125 for sensitivity at 95% specificity, 0.5316
for ungradability kappa, and 0.8057 for ungradability AUROC
in preliminary test phase 2.
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Introduction
Glaucoma is a progressive eye disease leading to blindness
due to chronic damage to the optic nerve. It may be asymp-
tomatic in early glaucoma, therefore, the key to preventing
loss of vision from glaucoma is early detection and treatment
by ophthalmologists [1]. Artificial intelligence models have
been widely used to predict various eye diseases from fundus
images [2]. However, the models were not evaluated with ro-
bustness for dealing with out-of-distribution data when main-
taining high performance to predict glaucoma. To be used in
real-world scenarios, it is important to determine whether a
fundus image has enough information to diagnose diseases.

Challenge objectives and constraints. The AIROGS
challenge was organized to predict glaucoma with a real-
world fundus photograph using computational algorithms.
The algorithms will be evaluated for screening performance
and robustness. The participants could not access the test set
including fundus photographs and ungradable images which
cannot be decided as glaucoma. Glaucoma in the test set
should be predicted within 10 seconds per single image. In
the final test, the participants submitted the predicted results
and a short paper only once.

Methods
Dataset. We obtained a total of 101,442 fundus photographs
including 98,172 non-referable glaucoma (NRG) and 3,270
referable glaucoma (RG) from The Rotterdam EyePACS

Table 1. Dataset configuration. In phases 1–3, we selected all different images for
non-referable glaucoma.

Phase 1 Phase 2 Phase 3
Training set
Referable glaucoma 2,588 2,588 2,614
Non-referable glaucoma 2,550 2,575 2,605
Validation
Referable glaucoma 631 631 640
Non-referable glaucoma 660 644 649

AIROGS dataset [3] RG accounts for only 3.2% in the im-
balanced dataset. Thus, we chose an undersampling strategy
for preventing overfitting to NRG during the all three phases
(Table 1). A phase means a process to train and validate a
model. The photographs of NRG were randomly selected
same as the number of images of RG (3,270). We constructed
three datasets with undersampled NRG images and RG im-
ages. Few images were excluded if optic disc had not been
detected in the image.

Image preprocessing. Overall, we converted images to
grayscale, resized the images with 608 pixels of width and
608 pixels of height, and applied the contrast limited adap-
tive histogram equalization (CLAHE) to fundus photographs
for emphasizing the features of the fundus. We rotated the
images within 30 degrees, enlarged within range of 80% and
120%, flipped horizontally and vertically, shifted within 100
pixels, and brightened within range of 80% and 120%. We
added Gaussian noise in the images. We augmented the im-
ages brighter or darker because the brightness of fundus pho-
tographs was diverse. If image preprocessing failed during
test, we used a same sized image filled with zeros.

Segmentation of an optic disc using weakly super-
vised learning. It is essential to identify the glaucomatous
changes at the optic disc. So, we decided to develop a model
for detecting and segmenting the optic disc in the fundus
photograph. We annotated the position of the optic disc in
the 101 images (TRAIN000000 to TRAIN000100) roughly.
Then we did not label the position with white (RGB, [255,
255, 255]), but label the position with gradient through mul-
tivariate normal distribution. The probability density func-
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tion of the multivariate normal distribution X = [X1,X2] was
generated with mean of µ = [0,0] and standard deviation of
σ = [0.7,0.7] in the rectangle annotation. The generated val-
ues x are rescaled by

x
max(x) ×255.

An example of our approach for segmentation of optic disc is
depicted in Fig. 1.

Fig. 1. An example of an original image (left), a roughly labeled masked image for
the optic disc (center) and the predicted result (right).

We developed a basic U-net architecture [4] combined with
DenseNet121 [5] as an encoder for a segmentation task. The
shape of input was width of 608 and height of 608 and the
channel of input was 1. We used a stochastic gradient descent
algorithm with an initial learning rate of 0.001 dropped the
rate of 0.9 at every 20 epochs for optimization. We defined a
loss function with a dice coefficient metric. We chose the best
model with the lowest validation loss within 10,100 steps per
100 epochs.

Then we extracted the predicted optic disc with the iden-
tical size (608 for width, 608 for height) from the centroid
of the segmented object from each original fundus photo-
graph. If the segmented object was not detected in an im-
age, the image was excluded from the dataset. A total of 684
images were excluded from 101,442 images. We, as non-
specialized ophthalmologists, discovered 18 false positives
not fully including optic disc in 1,001 fundus photographs
(TRAIN000000 to TRAIN001000).

The architecture of our multi-modal model. Our multi-
modal neural network comprises two DenseNet121 models
which feed two inputs with full fundus photograph and the
extracted optic disc. First, we added a fully connected layer
with 128 neurons and a dropout layer with a dropout rate
of 0.2 after the last convolution layer of each DenseNet121
model. Then we concatenated the two dropout layers from
the two DenseNet121. Lastly, we additionally added a fully
connected layer, a dropout layer, a prediction layer. Before
we combined the two DenseNet121 networks, we pretrained
the models with the dataset in phase 1, respectively. Then,
after building the multi-modal model, the model was trained
with categorical cross-entropy loss and stochastic gradient
descent with a learning rate of 0.001 and a momentum of 0.9
using datasets of phases 1–2. In the last phase, we specifically
used F1 loss with weight of 0.7 and categorical cross-entropy
with weight of 0.3.

Uncertainty. Using dropout layers, we measured uncertainty
for each image to assess the robustness of the model [6]. We
obtained 20 predicted probabilities for each image, then we

tested statistically whether the mean of values is 0.5 or not us-
ing Wilcoxon one-sample test. We defined ungradability for
predicting glaucoma as a common logarithm of the p-value
for the Wilcoxon test.

Evaluation. Screening performance was evaluated using the
partial area under the receiver operator characteristics curve
(AUROC) over the specificity of 0.9 and sensitivity at the
specificity of 0.95. Ungradability for images was evaluated
with Cohen’s kappa and AUROC using human references and
predictions for robustness.

Results
We obtained 0.7635 for the partial AUROC, 0.6125 for sen-
sitivity at 95% specificity, 0.5316 for ungradability kappa,
and 0.8057 for ungradability AUROC in preliminary test
phase 2. Final test results are shown in https://airogs.grand-
challenge.org/evaluation/final-test-phase/leaderboard/.
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