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The development of automatic tools for early glaucoma diag-
nosis with color fundus photographs can significantly reduce
the impact of this disease. However, current state-of-the-art so-
lutions are not robust to real-world scenarios, providing over-
confident predictions for out-of-distribution cases. With this in
mind, we propose a model based on the Dirichlet distribution
that allows to obtain class-wise probabilities together with an
uncertainty estimation without exposure to out-of-distribution
cases. We demonstrate our approach on the AIROGS challenge.
At the start of the final test phase (8 Feb. 2022), our method had
the highest average score among all submissions.
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Introduction
The impact of glaucoma, one of the leading causes of blind-
ness, can be significantly reduced if diagnosed early. Auto-
matic systems can improve the success of screening programs
by reducing the workload of specialists. However, current
state-of-the-art-systems are usually not robust in real-world
scenarios, providing over-confident predictions with out-of-
distribution (OOD) cases. With this in mind, we propose
an uncertainty-aware deep network that predicts a Dirichlet
distribution on the class probabilities. During inference, this
type of approach allows to obtain class-wise probabilities to-
gether with a sample-wise uncertainty ∈ [01] of that same
classification, and has already proven successful for uncer-
tainty estimation in other tasks [1]. Additionally, to fully au-
tomate OOD detection, we exploit the assumption that refer-
able glaucoma detection is only possible if the region of the
optic disc (OD) has sufficient quality for diagnosis, since the
primary manifestations of glaucoma occur there. This intro-
duces an additional challenge, as the network has to addition-
ally provide, without supervision, the location of the OD.

AIROGS challenge This paper describes our submission to
the Artificial Intelligence for RObust Glaucoma Screening
Challenge (AIROGS challenge) [2]. The main task was to de-
velop an automatic method for referable glaucoma detection
in eye fundus image. Additionally, the system should pro-
vide a soft and binary decision on whether each image isn’t
diagnosable (ungradable), i.e. automatically identify OOD
samples and bad quality images. No definition or example of
what an ungradable image was provided. Furthermore, usage
of external datasets and annotations was forbidden.

Glaucoma classification with uncertainty
Dataset. The AIROGS development data [3] contains
101 442 images, from which 3 270 have referable glaucoma.
For our experiments, we randomly split the data into training,
validation and test sets with 80%, 10% and 10% of the data,
respectively. Thus, both the validation and the test set con-
tained 10 145 images, from which 327 were graded as refer-
able glaucoma. All images were resized to the input size of
the network. The test dataset has approximately 11 000 im-
ages. These images and their labels were hidden from the par-
ticipants, and instead performance evaluation was performed
by submitting the algorithm to the AIROGS web platform.
However, prior to the final test phase on these images, the
challenger organizers allowed to assess the performance of
the algorithm on around 10% of the test data. A total of 3
attempts were possible for this preliminary test phase.

Base architecture The algorithm was developed using ex-
clusively the AIROGS dataset [3]. The classification model
is composed of the first two inception blocks from the
Inception-V3 [4] network pre-trained on ImageNet [5]. Us-
ing only these blocks reduces the size of the receptive field
which, as it will be addressed later, allows to identify in de-
tail the relevant diagnosis regions and subsequently propose
an OOD binary decision.

Deep Dirichlet uncertainty estimation. Our method is
based on the direct modeling of the uncertainty following the
evidential deep learning approach [6]. In particular, we deal
with the K class probabilities as resulting from a Dirichlet
distribution, i.e., a belief mass bk is attributed to each single-
ton (i.e, class label) k, k ∈ {1, ...,K}, from a set of mutu-
ally exclusive singletons, and an overall uncertainty mass u
is provided, with u ≥ 0, bk ≥ 0 and u+

∑K
k=1 bk = 1. Each

bk is computed based on the evidence for that singleton ek

via bk = ek/S, where S is the total evidence. The prediction
uncertainty u is:

u= K

S
= K∑K

k=1(ek +1)
. (1)

The uncertainty is thus inversely proportional to the total
evidence, and in the extreme case of no evidence we have
bk = 0,∀k =⇒ u = 1. This evidence can be modeled by
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a Dirichlet distribution characterized by K αk parameters,
with αk = ek + 1. The probability p̂k of the class k is given
by the mean of the Dirichlet distribution parameters:

p̂k = αk

S
(2)

We utilize the uncertainty value u to detect OOD cases.

Network Training. The network receives as input 224×224
pixels RGB images and outputs per sample the glaucoma
probability and the confidence of the prediction. For that, we
first obtain K = 2 logits , which are clipped to [−200,200]
and then converted to evidences (e) using a softplus acti-
vation. We train the model with two loss terms based on
Kullback-Leibler (KL) divergence. The first term aims at
increasing e for the correct class by assessing the diver-
gence between the predicted α and the theoretically maxi-
mum αmax = 201:

LKLevid = KL(D(pi|αi) || D(pi|ygt�〈αmax, ...,αmax〉))
(3)

where ygt is the reference categorical label. A second KL
divergence term regularizes the distribution by penalizing
the divergence from the uniform distribution in the uncertain
cases:

LKLunif = KL(D(pi|α̂i) || D(pi|〈1, ...,1〉)) (4)

where D(pi|〈1, ...,1〉) is the uniform Dirichlet distribution
and α̂i is the Dirichlet parameters after removing the non-
misleading evidence from the αi parameters for sample i:
α̂i = yi +(1−yi)�αi. The final loss is then defined as:

L= LKLevid +atLKLunif (5)

with at being the annealing coefficient that increases as the
training progresses. In particular, at = min(1, t/s), where
t is the current training epoch and s is the annealing step,
gradually increasing the effect of the second term in the fi-
nal loss, avoiding the premature convergence to the uniform
distribution for misclassified images in the beginning of the
training [1]. Our model was trained with balanced batches
and the data was randomly augmented with flips, translations,
rotations, scales, Gaussian blur and brightness modifications.

Out-of-distribution binary decision. The challenge re-
quired participants to indicate, both with a continuous score
and a binary label, if an image is ungradable. Since no ex-
amples of ungradable images were provided, we made the
assumption that diagnosis is only possible if the OD has
enough image quality for diagnosis, as glaucoma main struc-
tural manifestation occurs in that region. Thus, we artificially
created OOD images by zeroing the regions of the images
where their Grad-CAM [7] is greater than 0.5. This allowed
us to produce in-distribution (ID) and OOD samples in our
validation set, with which we computed the threshold for the
binary ungradability decision. In particular, we contructed
a receiver operating characteristic (ROC) curve using uID
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Fig. 1. Uncertainty histogram of the in-distribution (ID) and the artificial out-of-
distribution (OOD) cases.

Fig. 2. Representative example of (left-to-right) original image (u = 0.08), Grad-
CAM overlay, out-of-distribution by optic disc obscuring (u = 0.54), and out-of-
distribution by flipping the binarized Grad-CAM (u = 0.08).

and uOOD. The ROC curve was used for selecting two de-
cision thresholds, one at 0.5 sensitivity (u = 0.35) and the
other at the optimal operating point (u = 0.13). We tested
both thresholds on the preliminary test phase, and we kept
u= 0.35 as it performed better on that data.

Evaluation and Results

The uncertainty histogram (Fig 1) for ID and OOD shows
that the predicted uncertainty u is a viable metric to iden-
tify images where the OD is not visible. To ensure that this
behaviour was due to the OD being obscured, we compared
the AUC values for detecting our OOD cases with the values
for detecting the cases where the corresponding Grad-CAM
mask was flipped vertically (see Fig. 2). The achieved AUC
values were 0.905 and 0.506, respectively, thus validating our
hypothesis that the OD image quality is pivotal for this task.
The challenge participants were evaluated using four metrics:
1) the partial area under the ROC curve (90-100% specificity)
for referable glaucoma (pAUC), 2) sensitivity at 95% speci-
ficity (TPR@95), 3) Cohen’s kappa score between the ref-
erence and the decisions provided by the challenge partic-
ipants on image ungradability (κ) and 4) the ungradability
AUC (gAUC). Table 1 shows our results on our test set and
on the preliminary test phase. As shown, besides a 10% per-
formance drop at TPR@95 and an over-optimistic estimation
of κ, which were expected given the reduced number of glau-
coma cases and complexity of the ungradability task, our ap-
proach shows a similar behaviour on both datasets. Impor-
tantly, the model shows high scores across all the metrics. In
fact, at the time of the opening of the final test phase (Feb.
8th, 2022), our method had the highest average score among
all submissions.

Table 1. Performance of the proposed method using the challenge metrics on the
preliminary test phase.

Test data pAUC TPR@95 κ gAUC
Our test set 0.9187 0.8990 0.6915 0.9049

Pr. test phase 0.8464 0.7813 0.4452 0.8691
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Conclusion
In this paper, we presented our method for the AIROGS chal-
lenge which, being based on the Dirichlet distribution, allows
to obtain a probability of referable glaucoma and the corre-
sponding prediction uncertainty. Even without explicit super-
vision, the model is capable of detecting OOD cases while
maintain a high performance on the classification task.
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