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Abstract. Biparametric MRI has emerged as an alternative to multi-
parametric prostate MRI, which eliminates the need for the potential
harms to the patient due to the contrast medium. One major issue with
biparametric MRI is difficulty to detect clinically significant prostate
cancer (csPCA). Deep learning algorithms ave emerged as an alternative
solution to detect csPCA in cohort studies. We present a workflow which
predicts csPCA on biparametric prostate MRI PI-CAI 2022 Challenge
with over 10,000 carefully-curated prostate MRI exams. We propose to
to segment the prostate gland first to the central gland (transition + cen-
tral zone) and the peripheral gland. Then we utilize these predcitions in
combination with T2, ADC and DWI images to train an ensemble nnU-
net model. Finally, we utilize clinical indices PSA and ADC intensity
distributions of lesion regions to reduce the false positives. Our method
achieves top results on open-validation stage with a AUROC of 0.888
and AP of 0.732.
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1 Introduction

Magnetic resonance imaging (MRI) plays an imperative role in prostate cancer
(PCa) diagnostics, and the number of prostate MRI scans is expected to sig-
nificantly increase as the recent evidence suggests that performing pre-biopsy
prostate MRI in men with suspicion of PCa [1]. The main objective of prostate
MRI is to identify clinically significant PCa (csPCa) (i.e., GleasonScore ≥ 3 +
4) while sparring men with benign lesions or indolent prostate from unnecessary
interventions or treatment. The prostate imaging-reporting and data system (PI-
RADS) was introduced in 2012 and updated twice to standardize prostate MRI
acquisition and interpretation [13]. The up-to-date multi-parametric prostate
MRI (mpMRI) protocol includes axial T2-weighted images, diffusion-weighted
images with a high b-value, apparent diffusion coefficient (ADC) maps calculated
* These authors contributed equally to this work
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from DWI and dynamic contrast-enhanced images. The alternative to prostate
mpMRI is bi-parametric prostate, which omits the contrast-enhanced sequence,
thereby eliminating the potential hazards from the contrast medium. Though
the benefits of the PI-RADS have been well recognized over the years, prostate
MRI still suffers from intra-reader and inter-reader differences and non-negligible
amounts of false-positive and false-negative results [12].

Deep learning (DL) has shown remarkable performance on a broad spectrum
of medical imaging tasks in recent years, with prostate cancer diagnostics no
exception. However, despite the promises of DL technology in PCa, most of
the proposed DL models have been trained on small single-center proprietary
data and were not publicly shared, hindering the reliability and wide-spread
adaptation [7]. ProstateX challenge partially addressed this problem, yet it did
not have the adequate data size to train and test DL models for prostate MRI
effectively [14].

PI-CAI (Prostate Imaging: Cancer AI) is a new grand challenge encompass-
ing over 10.000 carefully annotated prostate MRI scans [8]. The main goal of the
challenge is to allow researchers to design, train and test publicly available DL
models in large-scale for identifying csPCa on bi-parametric prostate MRI. In
this challenge, we used the state-of-the-art medical image segmentation model,
nnUnet, as the base model and made several contributions to improve its per-
formance.

2 Method

Studies have shown a relationship between prostate volume, benign and ma-
lignant pathologies [5]. In particular, the combination of prostate volume with
prostate-specific antigen (PSA) can be used as a biomarker in clinically signifi-
cant prostate cancer (csPCA) detections [9]. PSA density (PSAd) which is the
ratio between PSA and prostate volume, is an important biomarker in today’s
prostate cancer guidelines such as PI-RADS. Interestingly, it was shown that
Transition zone PSA density (TZPSAd) is a more accurate indicator than PSAd
in csPCA detection [11]. This shows that prostate cancers, which are located
within the prostate areas that host histologically different structures, differ in
terms of cancer incidence, prognosis, and outcomes. For these reasons, before
creating the prostate lesion segmentation / detection models, the prostate gland
segmentation model was created. The central gland (transition + central zone)
and the peripheral gland were segmented after.

2.1 Prostate Gland Segmentation

The prostate gland segmentation model was trained on 203 patients of the
ProstateX [3] dataset. Only the T2 modality was used in this model, because
it was the modality in which anatomical structures can be best distinguished.
nnUNet is a self-configuring framework that selects the best architecture de-
pending on the input dataset by adhering to a set of principles [6] (as detailed
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in Figure 1). The sum of crossentropy and soft Dice loss is commonly applied
by the nnU-Net framework, and the loss is applied at different resolutions (deep
supervision). A standardized data preparation and augmentation pipeline is in-
cluded with nnU-Net. In addition, extreme data augmentation techniques (such
as Gaussian noise, Gaussian blur, brightness, contrast, simulation of low res-
olution and gamma augmentation, elastic deformation, scale, flip, mirror, and
rotate) were used to maintain model performance at its highest level despite vari-
ations in acquisition parameters, resolution, image size, and quality. Five models,
each a 3D nnUNet model, were trained over the course of a thousand epochs us-
ing the training data that was split into five folds. On the PICAI dataset with
1500 Patients, it was found that there were no statistically significant differences
between the performances of the single model and the ensemble of 5 models. In
order to lessen the overall burden and shorten the prediction time, it was decided
to employ a single model.

Fig. 1: Prostate gland segmentation model

2.2 Data Preparation

All images were converted from MHA (.mha) to nifti format (.nii.gz) as a pre-
processing step for the lesion segmentation / detection models because nnUNet
requires nifti images within its own structure. To create images of the same size
and resolution, each patient’s ADC and DWI images were resampled, cropped,
or padded. T2 was used as the primary modality within each patient, and the
DWI and ADC images were adjusted to match T2 in terms of size and resolution.
ADC images were normalized with complete z-score normalization with respect
to the entire dataset while T2 and DWI images were normalized with instance-
wise z-score normalization since ADC images are more robust than T2 and DWI
images. Lesion segmentation was carried out using the NnUNet framework, but
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instead of the default combination of dice and cross entropy loss, Focal Loss and
cross entropy loss were employed, as in [2].

2.3 Lesion Detection

To begin with, a nnUNet model was trained using T2, ADC, and DWI images in
order to establish a baseline model and track the effects of upcoming techniques
on model performance. Throughout each experiment, the train and test splits
were kept in order to completely remove the impact of changing data distribu-
tion on performance. Despite the dataset being divided into five folds, the initial
experiments were only employed on one-fold. The main goal is to use the limited
computational resources as effectively as possible while also reducing the work-
load required to train five models for each new method. Additionally, test-time
augmentation was used to improve the model’s performance by making predic-
tions on many augmented images. To create a detection map that is required
by the PICAI evaluation step, we acquired unique lesion candidates, as done in
[2], using the voxel-level confidence maps that were produced. By starting at the
voxel with the highest degree of confidence and encompassing all related vox-
els (in 3D) with at least 40% of the peak’s degree of confidence, we specifically
produced a lesion candidate. The candidate lesion is then eliminated from the
softmax (confidence map), and the procedure is repeated up to the extraction of
5 lesions, if there are still remaining candidates. Small candidates with 10 voxels
or fewer (0.009 cm3) are eliminated.

Fig. 2: Prostate lesion segmentation model with prostate zone masks

In the second experiment, the prostate gland segmentation model’s output,
Peripheral and Central gland predictions (probabilistic), were given to the model
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as separate modalities in addition to T2, ADC, and DWI (as detailed in Figure
2). By doing this, the effects of prostate glands on lesion segmentation perfor-
mance were examined. The third experiment did not involve any model training.
Prediction performance of the model that had been trained in the second exper-
iment were evaluated on cropped images. In this experiment we center cropped
overly large pictures to remove the tissues that did not contain the prostate
area in order to evaluate the effects of these deleted tissues on model perfor-
mance. The largest and most dislocated prostatic regions are contained inside
the cropped images of 81 mm x 192 mm x 192 mm size. In the fourth experi-
ment, models were trained for five folds using T2, ADC, and DWI images, just
as in experiment 1. Model performances were evaluated using fivefold cross vali-
dation, and an ensemble of five models was tested on 100 patients (PICAI open
validation dataset) as detailed in Figure 3. To assess how the models performed
on cross validation and as an ensemble of five models on the test set, experiment
5 employed the same setup as experiment 2 for 5 folds. The third experiment did
not involve any model training, but center-cropped images were used to evaluate
the prediction capacities of models that were trained in experiment 5 (similar to
experiment 3).

Fig. 3: Ensemble of prostate lesion segmentation models

2.4 False positive elimination with clinical markers

To determine if the provided clinical information is useful for csPCA detection
or not, PSAd thresholding was performed in addition to the analysis carried
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out in the first six experiments using only images. PSAd was derived by divid-
ing the PSA value from the clinical report by the prostate volume, which was
determined using the segmentation model’s predictions for the prostate gland.
Although the probability of having csPCA is low in those with PSAd below the
threshold value of 0.1 in a study [4], the threshold value was determined as 0.04
in this experiment, thus reducing the possibility of false negative predictions. In
other words, in Experiment 7, in addition to the setup in Experiment 6, PSAd
thresholding was performed and those with PSAd value below 0.04 were directly
counted as non csPCA. Another point to emphasize is the intensity distribution
of the lesions in the ADC images. As previous studies have shown [10], the ADC
intensity distributions of lesions differ between benign and malignant cancers, so
this difference can be used as a significant variable for lesion differentiation. In
the final experiment, we investigated whether performance could be improved
by thresholding the ADC intensity distributions of lesions. First of all, the ADC
intensity distributions of the lesions of csPCA patients in the train dataset were
examined to find the ideal threshold value. While deciding the threshold value
as a result of histogram analysis, it is aimed to prevent possible false negative
errors by adding a certain margin value and as a result, the value of 1200 was
determined. Since it was not reasonable to use the lowest ADC intensity value in
the predicted lesions as the threshold value, the threshold was made by calculat-
ing the average of the 10% percentile. According to this threshold value, those
with a value above 1200 have been determined as non csPCA for FP elimination,
since the probability of malignancy is very low.

3 Results

The prostate gland segmentation model was the first trained model. In this
model, a 3D nnUNet structure was implemented. 203 patients from the Prosta-
teX dataset were used to train the 3D nNUnet model in order to get probabilis-
tic prostate gland segmentation. Only the T2 modality was considered in the
prostate gland segmentation model since it offered the finest anatomical struc-
ture distinction among the T2, ADC, and DWI modalities. Five folds of the
ProstateX dataset were created, and a model was trained for each fold. On the
PICAI dataset of 1500 patients, prediction was done using a single model and an
ensembled model to compare the performances. Since the ground truth prostate
gland masks were not available for the 1500 patients of the PICAI dataset, it was
not possible to determine the model performances directly; instead, the perfor-
mances of the single model and the ensembled model were determined based on
the differences in the predictions. Dice scores were calculated in order to compare
the predictions of the single model and the predictions of the ensembled model.
As a result, the dice scores obtained 95.6% for the central zone and 92.4% for
the peripheral zone. Since the predictions of both models are fairly similar, it
was decided to deploy only one model in order to cut down on workload and
prediction time. Because the main objective of this model was to properly seg-
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Table 1: Validation scores of the compared models for significant prostate can-
cer detection. RS: Ranking Score, AUROC: Area Under the Receiver Operat-
ing Characteristic Curve, AP: Average Precision, M: Prostate gland mask, C:
Cropped prediction

Validation (100 Patients)

Experiments RS AUROC AP

S
in

gl
e

M
od

el nnUNet semi 0.734 0.817 0.65

nnUNet semi, M 0.755 0.851 0.658

nnUNet semi, M, C 0.77 0.864 0.677

nnUNet semi 0.712 0.821 0.602

E
n
se

m
b
le

M
od

el
s

nnUNet semi, M 0.777 0.87 0.684

nnUNet semi, M, C 0.807 0.885 0.729

nnUNet semi, M, C, PSA th.) 0.81 0.888 0.732

nnUNet semi, M, C, PSA th., ADC th) 0.81 0.888 0.732

ment prostate zones, the loss function was set to Dice + CE loss during model
training.

Fivefold dataset splits were predetermined for the experiments, and they per-
sisted throughout all of the experiments. As a result, it was possible to correctly
assess how training and postprocessing methods used in studies affected perfor-
mances. The first trained lesion segmentation model was the 3D nNUnet model
created as the base model. In this experiment, which was done as a single model,
first fold data was included (1200 training, 300 validation) and T2, ADC and
DWI modalities were used. In external validation (PICAI online validation with
100 patients), it received an area under the receiver operating characteristics
curve (AUROC) of 0.817, an average precision (AP) of 0.65, and a ranking score
(RS) of 0.734, which is the average of AUROC and AP. In the second experiment,
the peripheral and central gland masks, which are the outputs of the prostate
gland segmentation model, were fed into the model as two separate modalities
in addition to T2, ADC, and DWI. In external validation, this model achieved
AUROC of 0.851, AP of 0.658, and RS of 0.755. Based on these results, it was
concluded that giving prostate masks as separate modalities to the model had
a positive effect on performance. The second experiment’s trained model was
evaluated on cropped images in the third experiment, which did not include any
model training. In this experiment, images having a wide field of view (FOV)
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were cropped, and it was attempted to eliminate as much of the regions from
the images that were unlikely to contain lesions. The results of the validation
on external dataset are: AUROC of 0.864, AP of 0.677, and RS of 0.77. Because
the model predicted on smaller images rather than extremely broad images, the
prediction result on cropped images may have been greater than that of earlier
models. The Figure 4 shows a sample image before and after cropping.

Fig. 4: Sample image before and after crop

After the experiments carried out as a single model, ensemble experiments
with 5 models were carried out. These experiments were started in order to pre-
vent possible bias that may occur due to data splitting and to create stronger,
more generalizable models by training 5 models for 5 folds by combining their
power with ensemble. As a first of the ensemble experiments, 5 models were
trained for 5 folds with T2, ADC and DWI modalities, so that a base model was
created for the ensemble experiments, and it was possible to compare it with the
single model trained with the same setup. The results of the validation on the
external dataset are: AUROC of 0.861, AP of 0.602, and RS of 0.712. It was dis-
covered that the single model performed better than the ensembled model when
their respective performances were compared. The possible reason behind this
was bias due to data distribution. In the next experiment, 5 models were trained
for 5 folds with the dataset created by adding peripheral and central zones to
T2, ADC and DWI modalities, and the performance of the ensemble model was
tested on the external dataset. The resulting metrics are AUROC of 0.87, AP
of 0.684 and RS of 0.777. These results highlight that prostate gland segmenta-
tions have a beneficial impact on performance in experiments applying ensemble
models. Furthermore, the ensemble model outperformed the single model in the
experiment with masks whereas the single model outperformed the ensemble
model in the experiment without masks. These findings suggest that the perfor-
mance that prostate gland masks add to the model allows the masked models to
avoid biases brought on by distributions. The performance of ensemble models
with prostate masks trained in Experiment 5 was assessed on cropped images in
Experiment 6. The resulting metrics are RS of 0.807, AUROC of 0.885, and AP
of 0.729. Predicting on cropped images has improved performance in ensemble
models just as it did in single model.
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Fig. 5: Histogram of ADC values

PSA thresholding was performed to analyze whether the model performance
could be improved by combining the clinical data with the best-performing model
obtained as a result of the experiments with DL methods. Although a threshold
of 0.1 is considered appropriate in the literature for the differentiation of malig-
nant and benign, in this experiment, 0.04 was chosen as the threshold value to
prevent possible false negative predictions, therefore patients below this value
were directly considered non-csPCA. The resulting metrics are RS of 0.81, AU-
ROC of 0.888, and AP of 0.732. As the result shows, PSA thresholding did not
significantly improve performance, but this was due to the threshold that was
kept low to prevent possible false negatives. It should also be noted that valida-
tion was performed on a small dataset of 100 patients. In the last experiment,
ADC intensity thresholding was applied. First, the ADC intensity distributions
of the lesion areas of the patients with csPCA in the train data were found and
a histogram was created by taking the average of the 10% percentiles of those
distributions. The histogram is as shown in the Figure 5. The threshold value
determined according to this histogram is 1200, this is because margin is added
to prevent possible false negatives. Patients who exceeded this threshold were di-
rectly deemed to not have csPCA. The resulting metrics are RS of 0.81, AUROC
of 0.888, and AP of 0.732. From what can be understood, there is no difference
between the previous experiment. All results are summarized in Table 1

4 Discussion

We proposed a nnU-net based model for clinically significant prostate cancer
detection. We included two key components to our model design: 1) introduction
of probabilistic prostate gland segmentations as input for lesion detection, 2)
Use of clinical markers such as PSAd and ADC lesion histograms to eliminate
false positive predictions. Our proposed framework achieved top performance in
open validation phase of PICAI challenge. One limitation of our approach is the
use of clinical indices as a post-processing step. We believe utilizing clinically
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critical information as a additional input to the model can increase the clinically
significant lesion detection similar to the daily clinical practice of the radiologisy.
In conclusion, we proposed a framework to detect clinically significant lesions on
biparamteric MRI, which can aid in avoiding contrast agent usage in current
clinical setups.
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