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Abstract 
Prostate cancer (PCa) is one of the most prevalent cancers in men and many people around the 
world die from ‘clinically significant’ PCa (csPCa). Early diagnosis of csPCa in bi-parametric 
MRI (bpMRI), which is non-invasive, cost-effective, and more efficient compared to 
multiparametric MRI (mpMRI), can contribute to precision care for PCa. The rapid rise in 
artificial intelligence (AI) algorithms are enabling unprecedented improvements in providing 
decision support systems that can aid in csPCa diagnosis and understanding. However, existing 
state of the art AI algorithms which are based on deep learning technology are often limited to 
2D images that fails to capture inter-slice correlations in 3D volumetric images. The use of 3D 
convolutional neural networks (CNNs) partly overcomes this limitation, but it does not adapt 
to the anisotropy of images, resulting in sub-optimal semantic representation and poor 
generalization. Furthermore, due to the limitation of the amount of labelled data of bpMRI and 
the difficulty of labelling, existing CNNs are built on relatively small datasets, leading to a 
poor performance. To address the limitations identified above, we propose a new Zonal-aware 
Self-supervised Mesh Network (Z-SSMNet) that adaptatively fuses multiple 2D/2.5D/3D 
CNNs to effectively balance representation for sparse inter-slice information and dense intra-
slice information in bpMRI. A self-supervised learning (SSL) technique is further introduced 
to pre-train our network using unlabelled data to learn the generalizable image features. 
Furthermore, we constrained our network to understand the zonal specific domain knowledge 
to improve the diagnosis precision of csPCa. Experiments on the PI-CAI Challenge dataset 
demonstrate our proposed method achieves better performance for csPCa detection and 
diagnosis in bpMRI. The Area Under the Receiver Operating Characteristics curve (AUROC) 
score and Average Precision (AP) score are 0.890 and 0.709 in Hidden Validation and Tuning 
Cohort (100 cases) (2nd rank) as well as 0.881 and 0.633 in Hidden Testing Cohort (1000 cases) 
(1st rank), respectively. 
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I. Introduction 
According to the latest statistics of International Agency for Research on Cancer, prostate 

cancer (PCa) is the 2nd most commonly occurring cancer in men and the 4th most common 
cancer overall. Worldwide, an estimated 1,414,259 people (contributing 7.3% of new cancer 
cases) were diagnosed with PCa and an estimated 375,304 people (contributing 3.8% of new 



cancer deaths) died from PCa in 2020 [1]. In the cancer statistics 2022 of American Cancer 
Society, the 5-year relative survival rate for patients diagnosed with local- or regional-stage 
PCa approaches 100% while for those diagnosed with the distant metastasis stage drops to 31% 
[2]. Finding ‘clinically significant’ PCa (csPCa) in early stage has a pivotal role in improving 
the survival rate of PCa and the quality of life for patients. However, reliable early warning 
clinical signs or symptoms are rarely produced in PCa [3]. Serum prostate-specific antigen 
(PSA) test are widely used in routine screening of PCa. While it’s controversial since the 
notorious overdiagnosis problem which can lead to overtreatments that have side effects such 
as urinary incontinence and erectile dysfunction [4]. Digital rectal examination (DRE) 
optionally following the abnormally elevated PSA is not recommended either due to low 
sensitivity and specificity as well as embarrassment and discomfort for the patient [5]. In the 
2019 European Association of Urology (EAU) guidelines and the 2019 UK National Institute 
for Health and Care Excellence (NICE) guidelines, multiparametric magnetic resonance 
imaging (mpMRI) is recommended as the initial diagnostic test prior to biopsy to screen for 
high risk csPCa and localize the possible lesions [6, 7].  

mpMRI of the prostate is mainly composed of anatomical T2-weighted imaging (T2WI) 
and the functional sequences of diffusion-weighted imaging (DWI) and dynamic contrast-
enhanced (DCE) sequences. T2WI with superior soft-tissue resolution provides anatomical 
structural information and appears hypointense in lesion areas. DWI quantifies the degree of 
random movement of water molecules within tissue and shows hyperintense in lesion areas 
where the cellularity is higher. Conversely, the apparent diffusion coefficient (ADC) map 
quantifying the degree of diffusion restriction shows low signal in lesion areas. DCE (perfume 
imaging) involves the injection of a gadolinium (Ga)-based contrast media and can identify 
angiogenesis within the tumour microenvironment, which has a higher degree of contrast 
enhancement than normal vessels [8]. To promote global standardization in the interpretation 
of prostate mpMRI examinations, the European Society of Urogenital Radiology (ESUR) 
created the Prostate Imaging Reporting And Data System version 1 (PI-RADS v1) in 2012 and 
then it was updated to version 2 in 2015 and version 2.1 in 2019 [9]. Despite such 
standardization, the inter-reader agreement in diagnosis can be low (<50%) when the 
radiologists are inexperienced [10, 11] and the interpretation can be sub-optimal. And since 
this system is semi-quantitative, it is easily affected by radiologists’ subjective perception and 
image quality. Besides, considering the Ga-related adverse effects (Gd-brain deposits and 
nephrotoxicity) in DCE and the long imaging time which are not suitable for routine screening, 
bi-parametric MRI (bpMRI), excluding DCE, is evaluated for csPCa detection and the 
performance is comparable to mpMRI [12]. 

The prosperity of deep learning algorithms (a subset of AI) has promoted the realization of 
fully quantitative computer-aided detection and diagnosis (CAD) of PCa in mpMRI [13, 14]. 
In particular, the establishment of models based solely on bpMRI has become most popular 
among the community [15-17]. However, these methods are often limited to 2D images that 
fail to capture inter-slice correlations in 3D volumetric images [13, 16, 18, 19]. The use of 3D 
CNNs partly overcomes this limitation but it introduces interpolation artifacts and adds 
computational load when converting the image to isotropic dimensions (image resolution) to 
capture even physical receptive field [20]. Some works dealt with the in-plane and through-
plane resolution differences of images in the network. They first reduced the intra-slice 
resolution to a level similar to the inter-slice resolution through anisotropic pooling or stride 
convolution, and then performed 3D convolutions on the roughly isotropic features [15, 21]. 
This does not fully adapt to the anisotropy of images, resulting in sub-optimal information 
representation and poor generalization ability. Besides, due to the limitation of the amount of 
data and the difficulty of labelling, the existing models are usually built on a relatively small 



dataset from single centre, leading to a poor performance of the stability and generalization of 
the model [22].  

Prostate Imaging: Cancer AI (PI-CAI), an all-new grand challenge with over 10,000 
carefully-curated prostate MRI exams, is held to validate modern machine learning (ML) 
algorithms and estimate radiologists’ performance at csPCa detection and diagnosis [23]. For 
ML researchers, the main task is to build a model for lesion-level detection and patient-level 
diagnosis of csPCa in bpMRI. For this challenge, we have developed a Zonal-aware Self-
supervised Mesh Network (Z-SSMNet) that adaptatively fuses multiple 2D/2.5D/3D CNNs to 
effectively balance representation for sparse inter-slice information and dense intra-slice 
information in bpMRI. A self-supervised learning (SSL) technique is also introduced to pre-
train our network using unlabelled data to learn the generalizable image features. Furthermore, 
we constrained our network to understand the zonal specific domain knowledge to further 
improve the diagnosis precision of csPCa. 
 

II. Methods 
The overview of our Z-SSMNet model is shown in Figure 1. We adopted a mesh network 

as the backbone and early fused the zonal anatomy information into the network to assist its 
learning. We also introduced an SSL technique to pre-train the network without labels and then 
fine-tuned it with labelled data. It mainly consists of three parts: 1) zonal mask generation; 2) 
self-supervised pre-training of the mesh network; 3) fine-tuning of the network for csPCa 
detection and diagnosis in bpMRI.  

 
 

 
 

 
Figure 1. The overview of our Z-SSMNet model consisting of three main parts: 1) zonal mask 
generation; 2) self-supervised pre-training of the mesh network; 3) fine-tuning of the mesh 
network for csPCa detection and diagnosis in bpMRI. 
 
1. Zonal-aware Self-supervised Mesh Network (Z-SSMNet) 

Our Z-SSMNet was built based on the network from [24] which seriously considers the 
anisotropy of medical images and latently fuses the multi-dimensional convolutions to 
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adaptively balance the representation for sparse inter-slice information and dense intra-slice 
information. Multimodal bpMRI images (T2WI, ADC, DWI) were input to three channels of 
the network. Considering the differences of frequency and imaging appearance of prostate 
lesions in peripheral zone (PZ) and transition zone (TZ) [25], we input the one-hot encoded 
zonal mask to the other three channels to guide the network to learn zonal specific knowledge. 
The network was pre-trained first in an SSL manner and then fine-tuned with labels for csPCa 
detection and diagnosis.  
2. Zonal Mask Generation 

We trained a standard 3D nnU-Net [26] model with T2WI and ADC images from 3 public 
datasets to generate prostate zonal segmentation mask (PZ and TZ). The mask was used to 
guide the network to learn region-specific high-level semantic information and assist in 
cropping of the regions of interest (ROI). We also removed noisy markers outside the prostate 
region as part of a post-processing method. Then we cropped the images and masks with the 
region of the prostate’s bounding box, expanding 2.5cm outward in all directions as the ROI. 
This allows for tumour outgrowth of the prostate and preserves a clear outline of the prostate 
relative to adjacent tissues and organs.   
3. Self-supervised Pre-training of the Mesh Network 

We used the image restoration of learning fine-grained pixel-level information as a pretext 
task and pre-trained our network in a self-supervised manner. Four specially tailored data 
augmentation methods were used in the image restoration task: 1) non-linear transformation by 
recovering the intensity values of the images that have undergone a set of monotonically non-
linear transformations. The model learns the appearance of the anatomic structures present in 
the images, 2) local shuffling by guiding the model to learn rich local texture and boundary 
information of objects while keeping its global structure understandable, 3) inner-cutout 
which learns the local continuous of organs and 4) outer-cutout which learns the organ spatial 
layout and global geometry. The detailed descriptions of data augmentation methods are also 
available in [27].  
4. csPCa Detection and Diagnosis in bpMRI 

The pre-trained mesh network was then fine-tuned using labelled data for csPCa detection 
and diagnosis. Considering the heterogeneous between data from multi-centres and multi-
vendors, we integrated the pre-trained network into the famous nnU-Net framework to form 
the Z-nnMNet that can pre-process the data adaptively. We performed the same pre-processing 
and augmentation on the zonal mask as the tumour label. The loss function consists of focal 
loss and cross-entropy loss. The generated detection map was post-processed by dynamic 
lesion extraction method proposed by Bosma et al. [21]. And the maximum value of its pixels 
was regarded as the predicted probability of the patient-level diagnosis. 
 

III. Experiments 
1. Datasets 

PI-CAI Dataset: provided by the challenge organizers including three Dutch centers 
(Radboud University Medical Center (RUMC), Ziekenhuis Groep Twente (ZGT), University 
Medical Center Groningen (UMCG)) and one Norwegian center (Norwegian University of 
Science and Technology (NTNU)), this dataset is sampled into four splits: 1) Public Training 
and Development Dataset. 2) Private Training Dataset. 3) Hidden Validation and Tuning 
Cohort. 4) Hidden Testing Cohort. There are 1500 cases in the Public Training and 
Development Dataset, including 328 cases from the ProstateX Challenge. Among them, 1075 
cases have benign tissue or indolent PCa labelled as all zero, 220 malignant cases are manual 
labelled by one of 10 trained investigators or 1 radiology resident, under supervision of one of 
3 expert radiologists, at RUMC, UMCG or NTNU. Each annotation is derived using all 
available MRI scans, diagnostic reports (radiology, pathology) and whole-mount 



prostatectomy specimen (if applicable). The other 205 malignant cases are labelled by an AI 
model. All original annotations are converted to the same dimensions and spatial resolution as 
their corresponding T2WI images. There are 7607 cases in the Private Training Dataset, 100 
cases in the Hidden Validation and Tuning Cohort used for a live, public leaderboard that 
enables model selection and tuning, and 1000 cases in the Hidden Testing Cohort used to 
benchmark the AI algorithms at the end of Closed Testing Phase. Institutional review boards 
of all four centres have waived the need for informed patient consent. For all the patients, 
bpMRI scans (including Axial T2WI, Axial high b-value (≥ 1000 s/mm²) DWI, Axial ADC 
acquired using Siemens Healthineers or Philips Medical Systems-based scanners with surface 
coils are offered. In the first round of the challenge, we used the 1500 cases in the Public 
Training and Development Dataset for model training. 

ProstateX dataset: Although the ProstateX dataset is included in PI-CAI dataset, no zonal 
masks are provided. Based on the original ProstateX dataset [28], Cuocolo et al. [29] labelled 
the lesion masks and zonal masks of the data to promote the prostate related researches like 
lesion detection and zonal segmentation. We used the 204 cases in ProstateX with zonal mask 
labels for the nnU-Net model training for zonal mask segmentation.  

Prostate158 dataset: Prostate158 including 158 cases is a curated dataset of 3 Tesla 
prostate bpMRI images for automatic segmentation of anatomical zones and carcinomatous 
lesions. Histopathologic confirmation is available for each cancerous lesion. All studies include 
a T2WI and DWI images with ADC maps. Images in each study were resampled so that 
orientation, direction, and spacing were the same [20]. We used this dataset both in the SSL 
pre-training stage and csPCa detection stage. 

MSD prostate dataset: This dataset consists of 48 prostate mpMRI studies comprising 
T2WI, DWI and DCE series. A subset of two series, transverse T2WI and the ADC was 
selected. The corresponding target ROIs were the prostate PZ and TZ. The data was acquired 
at Radboud University Medical Centre [30]. We only used 32 cases in the public training 
dataset for pre-training the zonal mask segmentation model. 
2. Experiment Details 

Data pre-processing: All the data are transferred to NifTI format and then resampled to 
same dimensions and spatial resolution as their corresponding original T2WI images. 394 cases 
coming from the Prostate158 dataset, ProstateX dataset and MSD prostate dataset with T2WI 
and ADC modalities were used for zonal segmentation model pre-training. The PI-CAI dataset 
and Prostate158 dataset were combined to train the Z-SSMNet. For the SSL pre-training, all 
the data were first resampled to 0.5x0.5x3 mm, T2WI and DWI images were normalized to [0, 
1] by the min-max normalization and the intensity values in each ADC map were clipped within 
the range of [0, 3000] and then normalized to [0, 1]. 

Implementation details: When pre-training the zonal mask segmentation model, we used 
T2WI and ADC as input, and the ratio of the training set to the test set is 4:1. The zonal mask 
generated by the pre-training model is post-processed to remove the noisy markers in extra-
prostatic area and then used as additional input channels for Z-SSMNet. For the pretext task of 
SSL pre-training, we extracted 3D sub-volumes with the size of 64x64x16 from each case as 
input and the ratio of the training set to the test set is 4:1. The stochastic gradient descent (SGD) 
with a momentum of 0.9 is selected as the optimizer. The initial learning rate (0.1) is gradually 
reduced according to the step learning rate policy. The loss function is mean squared error 
(MSE) loss. It should be noted that we do not change the zonal mask when performing 
nonlinear transformation on the images. In addition, inner-cutout and outer-cutout are mutually 
exclusive when used. The augmented zonal mask is one-hot encoded before being input into 
the network. For the csPCa detection and diagnosis, the cropped bpMRI mainly including the 
prostate area and the corresponding mask are input into the network. The PI-CAI dataset adopts 
the five-fold cross-validation split method provided by the organizer, and the Prostate158 



dataset is randomly added to each fold after stratification. The initial learning rate (0.01) is 
gradually reduced according to the “poly” learning rate policy and the maximum of epoch is 
setting to 500. The loss function is combined focal loss and cross entropy loss. 
3. Evaluation Metrics 

Patient-level diagnosis performance is evaluated using the Area Under Receiver Operating 
Characteristic (AUROC) metric. Lesion-level detection performance is evaluated using the 
Average Precision (AP) metric. Overall score used to rank each AI algorithm is the average of 
both task-specific metrics: 

Overall Ranking Score = (AP + AUROC) / 2. 
 

IV. Results 
Our test results on the PI-CAI Hidden Validation and Tuning Cohort and Hidden Testing 

Cohort are shown in Table 1. 
 
Table 1. The test results of our Z-SSMNet model. 
Dataset Ranking Score AUROC AP 
Hidden validation and tuning cohort 0.800 0.890 0.709 
Hidden testing cohort 0.757 0.881 0.633 

 
 

V. Conclusion 
We proposed a zonal-aware self-supervised mesh network (Z-SSMNet) for csPCa detection 

and diagnosis in bpMRI data. Our model implicitly fuses the multi-dimensional features in a 
balanced way by deep latent fusion of 2D/2.5D/3D convolutions which adapting to the 
variation of spacing ratios inter axes. The model for zonal mask segmentation was pre-trained 
on T2WI and ADC images. By fusing the zonal information into the model and pre-training 
the backbone with self-supervised learning which leveraging the availability of large amounts 
of unlabelled data, our model outperformed other competing algorithms, with 2nd ranking score 
of 0.800 in the hidden validation and tuning cohort and highest ranking score of 0.757 in the 
hidden testing cohort. 
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