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Abstract. This paper summarizes our approaches and results for the
PI-CAI 2022 Grand Challenge, which focuses on the detection and local-
ization of clinically significant prostate cancer (csPCa) using bi-parametric
magnetic resonance imaging (bpMRI). In addition to detecting subtle
prostate cancer features on MRI, this particular task presents several
other challenges, including a highly imbalanced dataset with only 28%
cases having csPCa, images acquired on two different scanners (Siemens
and Philips), and cases with imperfect labels. Our proposed model con-
sists of an ensemble of three models including 1) a 2.5D cancer detec-
tion model that combines our in-house SPCNet model together with an
in-house prostate gland segmentation model to force learning and pre-
dictions within the prostate, 2) a novel multi-task model called SPCNet-
Decision, that performs voxel-level cancer detection and localization us-
ing 2.5D SPCNet, as well as slice-level classification using a decision head
classifier, and 3) a 3D UNet model with a decoder incorporating residual
connections. We trained all three models using five-fold cross-validation
and averaged the predicted probability maps to generate the final en-
semble model predictions. Our ensemble model achieved an AUC-ROC
of 86.5% and average precision of 68.1% on publicly available validation
set which consist of 100 patients. It outperformed the baseline models
provided by the challenge organizers by a 3.9% (Our ranking score: 77.3%
vs. baseline ranking score: 73.4%).
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1 Introduction

Prostate cancer (PCa) is the second leading cause of cancer deaths among men
in western countries [1]. Bi-parametric magnetic resonance imaging (bpMRI)
is now widely utilized to detect prostate cancer, guide MRI-ultrasound fusion
biopsies, and plan treatment. MRI is currently considered as the most sensitive
non-invasive imaging approach for the visualization, detection, and localization
of prostate cancer. However, MRI interpretation is challenging due to inher-
ent subtle imaging features, and it suffers from wide inter-reader variability. As
such, there is a clinical need for standardized MRI interpretation to enable ac-
curate, generalizable and timely clinically significant prostate cancer (csPCa)
detection. Many machine learning algorithms have recently been developed to
improve computer-aided prostate cancer detection on MRI. However, compari-
son of these methods requires unbiased assessment on common training and test
data. To address these problems, the PI-CAI grand challenge presents a con-
solidated platform for training and evaluating machine learning algorithms for
prostate cancer detection using bpMRI and optional clinical data. The challenge
presents 1500 training cases, and standardized evaluation criteria for patient-
level diagnosis and lesion-level detection of csPCa (ISUP ≥ 2 cancer).

2 Methods

For the PI-CAI challenge, we developed several 3D and 2.5D (including three
consecutive MRI slices) deep learning models. This includes the 3D-UNet [2],
SPCNet [4] and a novel multi-task learning method with the SPCNet backbone
called SPCNet-Decision. In the following, we discuss the methods and data pre-
processing steps we used.

2.1 Data Preprocessing

Multiple preprocessing steps were applied to the MRI scans, which were adapted
from baseline models provided by challenge organizer [3].

– MRIs were all resampled to the same resolution (0.5mm×0.5mm×3.0mm/voxel)
and cropped around the center of the scan to 20 slices of 256× 256 each.

– All three MRI sequences (T2, ADC, and DWI) were independently normal-
ized with instance-wise z-score normalization.

2.2 2.5D Models

Our 2.5D models are based on the Stanford Prostate Cancer Network (SPC-
Net)[4], a convolutional neural network designed to selectively identify aggres-
sive cancer, indolent cancer, and normal tissue on MRI. For the PI-CAI chal-
lenge, we modified SPCNet to (a) to detect and localize clinically significant
prostate cancer on MRI, and (b) include three input-branches of T2w, ADC
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and DWI sequences. We also included an in-house prostate gland segmenta-
tion model ProGNet [5] to limit PCa detection to the prostate region. To train
our 2.5D prostate gland segmentation model ProGNet, we used ground truth
prostate gland segmentations provided by the challenge organizer. The SPCNet
takes T2w, ADC, and DWI images as input and has multiple outputs at various
image scales, which are then upsampled and fused to form the final output.

The SPCNet predicts more false-positive lesions, so we modified its archi-
tecture to include a new classification head to form a multi-task optimization
problem. Figure 1 depicts the network architecture. The classification head is
designed to determine if a slice contains any clinically significant prostate can-
cer. The classification head applies a 1x1 convolution layer and fully connected
layer to the probability maps generated by SPCNet and determines if cancer is
present in that slice. This model, called SPCNet-Decision outperforms the initial
SPCNet model significantly at both the patient-level and lesion-level. We trained
all variations of the SPCNet model with the Adam optimizer and a learning rate
of 0.005 using masked weighted-cross-entropy. The prostate gland segmentation
was used to compute the gradient only within the prostate gland boundaries.
All models were trained for 15-25 epochs.

2.3 3D Models

We trained several baseline 3D models locally, but the standard 3D UNet with
residual connections outperformed other models. This network includes 5 levels
and was trained using a multi-class Dice and cross-entropy loss using Adam
optimizer with a initial learning rate of 0.001. The models were trained for 200
epochs and the learning rate was adjusted using Cosine Annealing scheduler.

3 Results

For all our experiments, we used five-fold cross-validation on the training data
provided by the challenge organizers. We ensembled the predicted probability
maps from the U-Net, SPCNet, and SPCNet-decision models into a single model
using two different methods: simple averaging and z-score normalization. Sim-
ply averaging entailed summing the probability maps of multiple models and
dividing by the number of models involved. However, since each model produced
probability maps with different distributions, we performed z-score normaliza-
tion on these results prior to combining them, as follows.

– For each case in the validation set, we calculated the mean and standard
deviation of all voxels in the probability map with values greater than 0.01,
thresholding to exclude the background.

– We calculated the mean(mean) and mean(std. dev.) of all validation cases
to z-score normalize the probability maps output from each model for the
test cases:

Probnorm = (Proborig −mean(mean))/mean(std.dev.)
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Fig. 1: SPCNet network architecture with decision head.

– Probability maps from all four models were summed together, and this en-
sembled output re-scaled from 0 to 1, with 0 and 1 corresponding to the
cases in which all models predict probability of 0 and 1, respectively.

Thus, the more models that detect a lesion, the higher its probability in an
ensembled model. Results are shown in Table 1. Our ensemble model U-Net +
SPCNET-dec using averaging ensemble achieved an AUC-ROC of 86.5% and
average precision of 68.1% on publicly available validation set which consist of
100 patients. Our ensembled model (U-Net + SPCNET-dec) achieved a ranking
score 77.3% vs. baseline ranking score 73.4%. It outperformed the baseline mod-
els provided by the challenge organizers by a 3.9% in terms of overall ranking
score.

4 Conclusion

In this paper, we presented our work on patient-level diagnosis and lesion-level
detection of csPCa in bpMRIs for the PI-CAI grand challenge. We developed
a novel multi-task machine learning method, SPCNET-Decision, that incorpo-
rates both a classification head and prostate cancer detection head to tackle the
challenge of an imbalanced dataset. The classification head determines if cancer
is present in a MRI slice. Our final model was an ensemble of the 2.5D SPCNET-
Decision with a 3D UNet model, which improved performance and reduced de-
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Table 1: The performance results our models for five-fold cross validation and
public validation set. Here SPCNET-dec denotes SPCNET-Decision model and
avg denotes ensemble averaging. The row with light-gray color is our final model
submitted for the hidden test data.
Model Five-fold Cross Validation Public Validation Set

AUCROC[%] AP[%] Rank[%] AUCROC[%] AP[%] Rank[%]

U-Net 80.1 47.0 63.6 81.6 62.8 72.2

SPCNet 80.3 39.1 59.7 80.2 63.0 71.6
SPCNet-dec 82.0 46.0 64.0 86.5 66.4 76.5

U-Net+SPCNet-dec (z-score) 83.2 49.6 66.0 - - -
U-Net+SPCNet+SPCNet-dec (z-score) 83.4 50.9 67.2 85.7 66.9 76.3

U-Net + SPCNet-dec (avg) 82.1 48.4 65.3 86.5 68.1 77.3
U-Net + SPCNet + SPCNet-dec (avg) 83.4 48.9 66.1 86.1 68.3 77.2

tection of false positive lesions. The proposed methods achieved promising results
when evaluated with AUROC and AP on the validation dataset. In the future,
we aim to test our proposed approach on additional multi-institutional data.
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