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Abstract. Lung cancer is the most diagnosed and deadliest cancer world-
wide. Early stage is characterized by pulmonary nodules that can be de-
tected using computed tomography (CT) or at a cheaper technical cost
using chest radiography (CXR). However, training a detection neural net-
work requires large numbers of diseased patients that may not represent
the complete diversity of possible cases during model deployment. In the
context of the generation track of the NODE21 challenge, we propose
a method for nodule synthesis based on a deep generative multi-scale
cascaded network trained on a single image that learns how to compose
projections of volumetric CT nodules with the style of a CXR image.
The proposed approach produces images with realistic appearance that
corrects for some unrealistic visual artefacts produced by the competitor
baseline model.

Keywords: Nodule Generation · One-shot Learning · Domain adapta-
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1 Introduction

Generative adversarial networks (GAN) have achieved outstanding performances
in various fields of medical image analysis including image segmentation, cross-
modality image synthesis, super-resolution or denoising [1]. Due to their gener-
ative nature, they are also often considered for data augmentation in machine
learning-based models to address data scarcity, a recurring issue in medical imag-
ing [2]. However, most GAN-based methods rely on large training sets in order to
expose both the generator and the discriminator to sufficient number of examples
in order to reach Nash equilibrium. Departing from these usual requirements,
the one-shot GAN SinGAN model [3] has recently emerged as a new paradigm
for deep generative learning using multiple adversarial generators in a cascaded
multi-scale architecture. SinGAN enables to learn the rich complexity of natu-
ral images using as little as one training image. It has been applied to various
computer vision tasks including super-resolution or style transfer, but has not
yet been considered for realistic pathology insertion in medical imaging. In the
context of the NODE21 lung nodule generation challenge, we propose to explore
to what extent a SinGAN model trained on a single CXR image can be used for



2 G. Sallé et al.

realistic nodule synthesis to facilitate the training of a downstream nodule detec-
tion model. We show that this approach partly addresses some visual limitations
of the current baseline competitor approach based on Poisson image editing [4,
5]. In particular, we generally achieve smoother transitions between nodule and
background.

2 Method

Our method is based on a 2D one-shot multi-stage generative SinGAN model
[3]. Given a single image, SinGAN learns the image distribution at N different
scales using N scale-specific generators trained successively in a coarse-to-fine
fashion. The general principles of the SinGAN model are summarized in Fig. 1.

Fig. 1. SinGAN training pipeline. The image is initially downsampled to a very low
scale, numbered 0. At each scale n, the generator Gn learns to synthesize realistic
image patches. It sharpens the output from the previous scale n− 1 (or composes the
image for n = 0), while the discriminator Dn learns to distinguish real and generated
samples. After training scale n, the result is upsampled by factor r for the next scale.
Modified from [3]

In this work, we use the SinGAN architecture to achieve realistic style transfer
between projected CT nodule patches and a 2D CXR image. First, we naively
paste a 2D CT nodule on a CXR image at the desired location. We then learn a
SinGAN model by fixing a scale n0 and applying all generators linked to above
scales n ≥ n0 successively on the pasted nodule to produce a globally harmonized
CXR image containing a nodule.

Given the projective nature of chest radiography, this suppresses useful at-
tenuation information from other regions outside the nodule along the X-ray
beam. As a workaround, after CT nodule harmonization, we add back the origi-
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nal image to the SinGAN output using a weighted average depending on nodule
location.

In our experiments we noticed that nodules in lower regions of the lungs
and therefore on average appearing as hypersignals due to higher attenuation
can be better harmonized using a separated SinGAN model trained on images
cropped within this higher intensity background. The decision whether to apply
one model or the other is based on Otsu thresholding the CXR image into four
classes. The higher intensity SinGAN model is then selected when a majority of
voxels in the bounding box belongs to the higher intensity class. The CT nodule
mean intensity value is then adjusted using a contrast matching method provided
in the generation baseline. A scalar is calculated as the maximum between the
logarithm of intensity ratio Inodule/Icxr and a threshold value (0.6 for hyposignal
nodules, 0.7 for hypersignal ones). The nodule is finally multiplied by this scalar
before being naively pasted on the CXR prior to SinGAN harmonization.

Fig. 2. General workflow of the proposed approach.

3 Experiments and results

The organizers of NODE21 challenge provided 4882 CXR images, respectively
1134 with nodules and 3748 healthy, all of them of size 1024×1024. A set of 1186
volumetric CT nodules with corresponding segmentation masks was also avail-
able. To evaluate performance regarding to state-of-the-art method, a generation
baseline based on Poisson image editing [4] was also provided.

To build our training set, we first randomly selected two images correspond-
ing to the aforementioned hypersignal and hyposignal cases. We then selected
randomly 1200 healthy images to perform nodule generation : 1000 for training
our future evaluation detection network, 200 for validation. We finally built a
detection testing set composed of 200 healthy CXR (different from the first 1200)
and 200 containing real nodules.

For time efficiency purpose, we processed all 3D CT nodules prior and store
them for any further generation. All nodules are extracted according to their
masks and the function utils.generate_2d provided in the generation baseline is
applied on each of them. Each 2D array is finally stored as numpy array with
its corresponding mask. A CSV file containing all nodule diameters, computed
in the same way as the baseline, is also saved.
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To avoid overfitting, we added Gaussian noise with µ = 0 and σ = 3 and
Gaussian blur of scale 3 pixels. Figure 2 summarizes nodule generation process.
The nodule to be harmonized during model inference was selected exactly in the
same way as the generation baseline by randomly picking among nodules having
a diameter close to the the bounding box size. This nodule was then resampled to
the desired bounding box size without any distortion. For GPU capacity issues,
we could not train a SinGAN model on a 1024 × 1024 CXR. Given a training
image containing a nodule, we cropped a 256× 256 square near the nodule and
use it for training.

Regarding SinGAN parameters, we varied the ratio factor between each GAN
scale (from 0.75 to 0.85, creating 16 scales instead of 9) for smoother transition
between scales. We also modified the kernel size (from 7 to 5) to avoid artefacts
or strong blurry effects. All other parameters were kept unchanged with respect
to the original SinGAN model.

We trained the SinGAN model on 256 × 256 CXR crops around the pasted
nodule. The same processing was performed for the mask, as both masks and
image are required by the model. After inference, the original image was recon-
structed using the harmonized cropped image. If another nodule needed to be
generated on the same CXR, we selected a new nodule and repeated the entire
process.

A baseline faster-RCNN detection model was trained to adjust model param-
eters in-house. We tested them on our testing set composed of 400 real images
and evaluated AUC on predictions. The maximum scores we obtained for the
generation baseline and for our method are summarized in Table 1, which shows
AUC results slighly reduced compared to baseline model.

Visually, our method appears nevertheless often more satisfying. Fig. 3 shows
some cherry-picked generated samples for the baseline method and ours. In gen-
eral, the generated nodules for both methods seem realistic. However, the base-
line image often produces unnatural artefacts consisting of sharp transitions
between object and background. The proposed approach generally allows for a
smoother merging of the object to its background without such artefacts.

Table 1. Maximum AUC obtained on real data.

Metric Baseline Our method
AUC 0.71± 0.03 0.68± 0.02

4 Conclusion

In this study, we proposed a new method for the fusion of synthetic nodules
onto healthy CXR images based on a generative adversarial network trained on
a single image. The proposed approach produces realistic images that allow for
the training of a detection network applied on real images. Further experiments
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Fig. 3. Visual harmonization results for baseline (columns 1 and 2) and the proposed
approach (columns 3 and 4). Baseline results often show unnatural artefacts (top row,
indicated with red arrows). On the other hand, current parameters for our approach
may make nodules appear too visible (bottom row)

will focus on adjusting model parameters, which are clearly sub-optimal at the
time of submission. The realistic features in the generated images support the
potential interest of the method for improving the generalization power of nodule
detection models, especially in combination with other approaches based on
other principles.
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