Adversarial Correction Networks for Image Segmentation

TarHeelSeg

1 Introduction

A lot of great segmentation methods have been proposed since the medical image analysis community comes to the deep learning era [2]. UNet (VNet) is of the most successful models for segmenting medical images since it can better capture the details $[4,5]$. In this work, we propose to use adversarial learning mechanism to correct the wrongly segmented regions based on a basic UNet-like (VNet-like) structure. Also, we further improve the skip connection by well designing the connections $[1,5]$. The carefully designed dilation module is also adopted to enlarge the receptive field without costing much more memory. Also, some smooth strategy is used to improve the segmentation results.

2 Experiments

We separate the available training data from the prostate challenge dataset (PROMISE2012 [3]) into 3 parts: 40 subjects for training, 5 subjects for validation, 5 subjects for testing. And we conduct the experiments five times with randomly partition of dataset. Then, for the testing dataset, we simply ensemble the model among the trained 5 models to evaluate the coming testing subject.

References

[1] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770-778, 2016.
[2] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems, pages 1097-1105, 2012.
[3] Geert Litjens and et al.. Evaluation of prostate segmentation algorithms for mri: the promise12 challenge. MedIA, 18(2):359-373, 2014.
[4] Fausto Milletari and et al.. V-net: Fully convolutional neural networks for volumetric medical image segmentation. In 3DV, pages 565-571. IEEE, 2016.
[5] Olaf Ronneberger and et al.. U-net: Convolutional networks for biomedical image segmentation. In MICCAI, pages 234-241. Springer, 2015.

