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Abstract

We propose a two steps model with Convolutional Neural Networks
for the segmentation of the prostate in T2 weighted MRI. The first step
receives the T2 images and generates a coarse heat map of the prostate
location. The second step uses the heat map and the T2 image to perform
the final segmentation. In order to train the model we used the dataset
provided by the PROMISE12 challenge.

1 Method

1.1 Preprocess

Firstly, we resize all the volumes to have spacing 0.625×0.625×1.5 (1; 2), then
each volume is normalized to have average zero and standard deviation one (3).

We loop over all the volumes extracting patches with size 128×128×16 and
64× 64× 16, with an step size of 32× 32× 8 and 16× 16× 4 respectively. Then,
all the patches where at least the 1% of the pixels are prostate, are classified as
positive, while all the others are classified as negative. We use this classification
to balance the representation of both classes in each batch (4; 5).

Finally, we perform data augmentation on the fly, having each batch a prob-
ability of 50% of being rotated (90o, 180o, 270o) or flipped among the vertical
axis in the axial plane.

1



Figure 1: General description of the proposed model. Note that in the step one
only the T2 image (a) is used, whilst in the step two both, the T2 image (a)
and the heat map (b) are used in order to generate the final segmentation (c).

1.2 Model architecture

The proposed model consists in two steps. Firstly, a Convolutional Neural
Network (CNN) receives a patch of 128× 128× 16 from the T2 images, reduces
its resolution by a factor of 8, and then performs a prediction. The generated
map is then resized by bilinear upsampling to its original resolution, and a
Gaussian filter is applied in order to smooth the probabilities. Secondly, another
CNN receives a patch of 64× 64× 16 with the T2 images and the previous heat
map; then reduces its resolution by a factor of 2 and performs a prediction.
Finally the prediction is upsampled in order to match the original resolution.
The Figure 1 shows a graphical definition of the model.

The first step consists in a CNN with the next architecture: one first con-
volution with a kernel size of 11 × 11 × 11, stride of 8 × 8 × 8 and 32 channels
is applied to the input patches. It is followed by three Residual Blocks (6) with
kernel size of 3×3×3, stride of 1×1×1 and 32 channels. Then a last convolution
is performed in order to get the final 2 maps. Finally the maps are upsampled
with bilinear interpolation to the original resolution.

The second step consists in a CNN with the next architecture: one first
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convolution with a kernel size of 11×11×11, stride of 2×2×2 and 32 channels
is applied to the input. It is followed by four Residual Blocks (6) with kernel size
of 3×3×3, dilation rate of 2×2×1 and 32 channels. Each two residual block we
perform a long residual connection. A last convolution is performed in order to
get the final 2 maps. Finally the maps are upsampled with bilinear interpolation
to the original resolution and the largest connected region is selected.

We follow the standard scheme of Batch Normalization + Convolution +
ReLU in both architectures.

2 Evaluation

2.1 Training protocol

The same training protocol have been followed in both networks. The networks
were trained with Adam Optimizer with a mini-batch size of 16 and equal rep-
resentation of negative and positive samples. The initial learning rate was set
to 1 × 10−3, and the models were trained for 15 × 103 iterations. L2 regular-
ization was set to 5 × 10−4. Both models were trained using cross entropy as
cost function. In test phase, we used overlapped sliding windows to merge all
the probability maps generated for an specific volume. The stride used was
64 × 64 × 8 for the first step and 16 × 16 × 4 for the second one.

2.2 Results

To check the model behavior we split the dataset into 5 cases for validation and
45 cases for training. The 5 cases of validation were Case(03/04/18/23/42). We
obtained a Dice average of 95.14 in the training set, and 86.25 in the validation
set.
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