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Abstract. Prostate segmentation is a necessary step for computer aided
diagnosis systems, volume estimation, and treatment planning. The use
of standard datasets is vital for comparing different segmentation algo-
rithms, and 100 datasets from 4 institutions were gather to test different
algorithms on T2-weighted MR imagery. In this paper, a landmark-free
Active Appearance Model based segmentation algorithm was employed
to segment the prostate from MR images. A deformable registration
framework was created to register a new image to a trained appearance
model, which was subsequently applied to the prostate shape to yield
a final segmentation. Results on 50 training studies yielded a median
Dice coefficient of 0.80, and the fully automated algorithm was able to
segment each prostate in under 3 minutes.

1 Background and Motivation

Segmentation of the prostate boundary is useful for many applications, such as
a computer aided cancer diagnosis systems [1], and treatment evaluation via
planimetry-based volume estimation [2]. Several segmentation schemes for MR
imagery of the prostate have been recently presented, including algorithms by
Klein et al. [3], Martin et al. [4], Pasquier et al. [5], and Makni et al. [6]. Klein
et al. [3] performed a registration between an MR image of the prostate and
an atlas of training data to achieve a segmentation of the prostate. Martin et
al. [4] also used an atlas of training images, but constrained the segmentation
model through the use of a statistical shape model. Pasquier et al. [5] used
an Active Shape Model [7] method for extracting a statistical shape model of
the prostate, which then looked for strong gradients to identify the prostate
edge. Finally, Makni et al. [6] used a statistical shape model of the prostate,
and clustered the intensities within a manually placed region of interest into 3
clusters: surrounding tissues and fat, central prostate zone, and the peripheral
prostate zone. Any pixels within the latter 2 zones were determined to be in the
prostate.

In this paper, we similarly perform image registration to align the prostate
in a new image to a collection of existing training images, but do so within
an Active Appearance Model (AAM) framework [8,9]. With AAM’s, Principal
Component Analysis (PCA) is performed on the set of image intensities inside



the object of interest, as well as a parameterization of the shape, to generate a low
dimensional appearance projection. Traditionally, to segment a new image, the
projections are varied, and the original, high dimensional shape and appearance
are reconstructed. In the algorithm used in this paper (based on [9]), a new
image is deformably registered to the AAM. At each iteration of the registration,
the high dimensional set of intensities are reconstructed, and the best intensity
reconstruction is found. This registration is then applied to the prostate shape,
to yield a segmentation of the prostate.

This algorithm is similar to the atlas-based approach [3], but instead of reg-
istering a new image to an atlas, the new image is registered to a statistical
model of entire set of training data (defined using an AAM). While the original
algorithm from which this is based [9] used an affine registration (scale, rotation,
and translation) to register the new image to the AAM, this paper introduces
a spline-based deformable registration component [10] to overcome differences
in prostate shape and appearance due to highly varied multi-institutional data.
These additional degrees of freedom are especially important when dealing with
multi-institutional data (as in this dataset), because different acquisition pro-
tocols (such as the use, or lack of use, of the endorectal coil) can yield sub-par
results when only linear (affine) transformations are considered. In addition, as
in [9], a levelset representation of the shape to overcome issues associated with
using landmarks such as triangulation errors and correspondence issues.

2 Methodology

2.1 Brief Overview

The algorithm used to segment the prostate in this challenge can be separated
into two steps: (1) training, and (2) testing. The training step involves aligning
the training images, and generating a levelset-based AAM. The testing step
involves deformably registering a new image to the AAM and applying that
registration to the shape to yield a final segmentation.

2.2 Notation

An image scene is defined as C = (C, f), where C represents a set of spatial
locations, and each c ∈ C represents a set of Cartesian coordinates c = (x, y, z).
The number of training images is denoted as N . The number of pixels in each
image is denoted as P = |C|. The intensity at each c ∈ C is denoted as f(c) and
the set of P intensities for training image i is denoted as Fi. A given training

scene is denoted as Cn = (Cn, fn). C
(in)
n ⊂ Cn defines the set of pixels inside the

prostate. A new image to be segmented is denoted as Cθ = (Cθ, fθ).

2.3 Training

1. Alignment. The prostate surfaces on all training images are first aligned
using an affine transformation, to bring all the objects into the same coordinate
frame.



2. Estimating Shape. To train the AAM, the prostate shape for training image
i ∈ {1, . . . , N} is represented by the signed distances to the prostate surface [11],
and is defined as, Li = {li(1), . . . , li(P )}, where

li(k) =







− min
c∈C(In)

‖ck − c‖2 if ck ∈ C
(In)
i

+ min
c∈C(In)

‖ck − c‖2 if ck /∈ C
(In)
i .

(1)

3. Principal Component Analysis. To generate the AAM, Principal Compo-
nent Analysis (PCA) is performed on the set of N shapes (L1, . . . , LN), and N
intensities (F1, . . . FN ), which yields a matrix of eigenvectors ψL for the shape,
and another matrix ψF for the intensities, as well as the mean shape and inten-
sity values (L and F , respectively). PCA is then used to project each training
image’s set of shapes and intensities into low dimensional spaces, defined as,

L̂ = ψ−1
L · (L− L) (2)

and

F̂ = ψ−1
F · (F − F ). (3)

The shape and intensity projections are concatenated as Ĝ = [F̂ , L̂], and a
second PCA is performed on Ĝ1, . . . , ĜN , resulting in a matrix of eigenvectors
ψG, essentially linking the shape and intensity, as described in [8]. The first |F̂ |
rows of ψG represent the intensity projections, while the latter |L̂| rows of ψG

represent the shape projections.

2.4 Testing

To segment a new study Cθ, registration is performed to fit the new image to the
AAM. Let T (Fθ) represent the set of intensities, transformed by transformation
T . The goal of the registration framework is to determine which transformation
T should be applied to the new image to register it to the trained AAM. T is a
general term which can represent any set of transformations, and in the experi-
ments performed for these datasets, T represents linear (affine) transformations,
as well as b-spline transformations [10]. To determine the cost of transformation
T , the AAM is used to reconstruct the intensities, essentially determining how
well the given intensities are represented in the training data.

The process to segment a new study Cθ and yield the final segmentation C
(In)
θ

is described as follows.
1. Calculate PCA Based Projection. Equation 3 is first used to calculate a
low dimensional projection F̂T of T (Fθ).
2. Reconstruct Linked Projections. Recall the the linked projections Ĝ
represent a concatenation of both intensities and shape projections. Letting the
first |F̂T | rows of ψG, (representing the intensities) be denoted as ψG,F , the

linked projections ĜT (representing both intensity and shape) are reconstructed
as,



ĜT = ψG · ψ−1
G,F · F̂T . (4)

3. Reconstruct Intensities and Shape. Given the linked projections ĜT , the
original intensities and associated shape are next reconstructed. Letting ĜT be

defined as the concatenation of intensity and shape projections ĜT =
[

ḞT , L̇T

]

,

the original P -dimensional intensities and shapes are reconstructed as,

R(FT ) = F + ψF · ḞT , (5)

and

R(LT ) = L+ ψL · L̇T . (6)

Calculate Correlation. To evaluate how well a given transform T fits the
image, the normalized cross correlation (NCC) is calculated between FT and
R(FT ), denoted as HT = NCC (FT , R(FT )).

Maximize Correlation. Since there now exists an evaluation of each transform
T (denoted as HT ), T is varied until HT is maximized, as

T ∗ = argmax
T

HT . (7)

Then, the shape is calculated to yield a final segmentation as,

C
(In)
θ = R(LT∗) < 0. (8)

While the original implementation [9] defined T as a linear transformation
consisting of rotation, scale, and translation, in this study we performed a b-
spline transformation following the linear registration. Hence the best linear
transformation (maximizing HT ) was determined, after which a series of b-spline
transformations were used to achieve a higher normalized cross correlation (HT

value) than linear transformations alone.

3 Experimental Design

3.1 Data Description

For this challenge, 100 datasets of T2-weighted prostate imagery from four dif-
ferent institutions were compiled, and randomized. The data consisted of both
endorectal and non-endorectal data. 50 training studies with expertly annotated
ground truth were made available for training, and 30 additional studies were
provided (without any ground truth labels) to evaluate the algorithms.



3.2 Implementation and Efficiency

The algorithm described above was implemented in a completely automated
fashion in C++ using the ITK framework. Table 1 contains additional imple-
mentation details. A genetic algorithm was used to solve Equation 8, and con-
verged in under 180 seconds. To determine the accuracy of the algorithm on the
training data, a leave-one-out experiment was performed, in which 49 studies
were used to train, and 1 was used to test. The Dice similarity coefficient [12]
was used to evaluate the accuracy.

4 Results and Discussion

The leave one out experiment resulted in a mean Dice coefficient of 0.79 and a
median Dice coefficient of 0.80. The lower Dice values than those reported in [9]
are most likely due to the variation in the training set from multiple institutions
(such as the mix of endorectal and non-endorectal imagery) which can signifi-
cantly change the prostate shape and appearance. While the use of a deformable
registration algorithm was implemented to help alleviate that concern, future
work will entail creating more patient-specific appearance models, rather than a
global appearance model.

Qualitative results from the test data (in which no segmentations were given)
are shown in Figure 1. It can be seen that the AAM was able to accurate detect
the prostate boundary on the images shown, even though the appearance of the
images vary greatly, especially in the use of the endorectal coil.

Table 1: Implementation and efficiency details.

Parameter Value

A
lg
o
ri
th
m

Language: C++

Compiler: GCC 4.6

Libraries/Packages: ITK, OpenMP, Boost, Eigen

GPU Optimizations: None

Multi-Threaded: Yes

User Interaction: None (Fully Automated)

M
a
ch

in
e CPU Clock Speed: 2.67 GHz

Machine CPU Count: 8

Machine Memory: 32 GB

Memory Used During Segmentation: 1.5 GB

T
im

e Training Time: 1 hour, 20 minutes (for 50 studies)

Segmentation Time: 3 minutes (per study)

User Interaction Time: N/A



(a) (b)

(c) (d)

(e) (f)

Fig. 1: Qualitative results from the segmentation challenge. In each case, the
prostate segmentation volume is shown in green. Three of the cases are with an
endorectal coil ( (a), (c), (e)) and three are without ((b), (d), (f)).



5 Concluding Remarks

The data acquired for the prostate segmentation task was multi-institutional
and therefore quite challenging to segment accurately. However, the use of the
landmark-free Active Appearance Model based on a deformable registration
framework was able to segment the training data with an accuracy of 0.80 and
qualitatively able to segment the test data very well. Additional work will entail
creating patient-specific, or institution-specific, appearance models to yield more
accurate results.
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