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Abstract. Segmentation of the prostate gland in Magnetic Resonance
(MR) images is an important task for image-guided prostate cancer ther-
apy. The low contrast of the prostate to surrounding tissue in MR im-
ages makes automatic segmentation very challenging. In this paper, we
propose an automatic approach for robust and accurate prostate seg-
mentation in T2-weighted MR scans. We first employ a boosted prostate
detector to locate the prostate in the images, and then use a Probabilistic
Active Shape Model for the delineation of its contour. Our approach has
been quantitatively evaluated on 50 MR images, on which we achieve a
median dice coefficient of 0.85 (IQR: 0.09).

1 Background

Magnetic Resonance Imaging (MRI) plays an increasingly important role for
treatment of prostate cancer. MRI is used to support biopsies, radiation therapy,
or planning of surgeries. Automatic segmentation of the prostate in MR images
can greatly enhance the clinical workflow. Although the contrast between soft
tissue organs in MR images is better than in Computed Tomography scans, ac-
curate delineation of the prostate’s border remains difficult even for the human
observer. An additional challenge for automatic segmentation is that MR image
acquisition does not provide standardized image intensities. Moreover, MR im-
ages may be corrupted by artifacts such as large intensity variations within a
single image.

State-of-the art algorithms for prostate segmentation in MR images rely heav-
ily on prior knowledge. Klein et al. [1] use multiple atlas registration and label
fusion to segment a scan. Makni et al. [2] first segment the image with an Active
Shape Model (ASM) and then refine the resulting segmentation with a Markov
Random Field. Toth et al. [3] use a level set-based Active Appearance Model
for segmenting the prostate. Expressive texture features are determined during
the training phase by filtering the images with various kernels and selecting the
most appropriate features.

In this paper, we propose an automatic segmentation algorithm for prostate
segmentation in T2-weighted MR images. We extend the Viola-Jones object
detection algorithm [4] to 3D and use it to detect the prostate in MRI scans. The



Fig. 1. Qualitative segmentation result of automatic prostate segmentation (from left
to right: axial, sagittal and coronal view; Dice coefficient: 0.86). The red contour shows
the expert segmentation, the green contour shows our automatic segmentation.

prostate’s contour is then delineated with a Probabilistic Active Shape Model
(PASM). Our algorithm is characterized by very efficient object detection and
segmentation which is considerably faster than the related approaches presented
above. We trained and quantitatively evaluated the approach on 50 studies of
the Promise123 segmentation challenge.

2 Methodology

In this section, we present our approach for automatic prostate segmentation,
which is comprised of three steps. We first preprocess the image in order to
obtain a normalized intensity range for all images (Sec. 2.1). Then, we slide a
detector over the image which detects the prostate’s bounding box based on 3D
Haar-like features (Sec. 2.2). The bounding box is used to initialize the final step
of our algorithm, in which we segment the prostate with a PASM (Sec. 2.3).

2.1 Inhomogeneity correction and intensity normalization

Image intensities in MRI data are not standardized, which means that the inten-
sity of a certain tissue may vary significantly from image to image. Moreover, one
can usually observe spatially smoothly varying intensity inhomogeneities within
a single MRI scan, the so-called bias field. As both non-standardization and the
bias field impede accurate and robust segmentation, image preprocessing and
intensity normalization are crucial.

We first estimate and remove the bias field. This is done using coherent
local intensity clustering (CLIC) [5], which computes the bias field by an energy
minimization based on local Fuzzy-C-Means clustering. As parameters for CLIC,
we chose σ = 4 for the scale of the truncated Gaussian which defines the size of
the local kernel, and use q = 2 as fuzzifier for the Fuzzy-C-Means. These values
have been recommended by Li et al. [5]. Moreover, we clustered into K = 4
intensity classes, as this choice gave visually the best results.
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After bias field computation, we normalize and rescale the image intensities.
Image normalization is often done by shifting the mean intensity to zero and scal-
ing the intensities such that the standard deviation equals one. For more robust
normalization, we use the median image intensity Imed and the median absolute
deviation MADI as an estimate for mean and standard deviation, respectively.
The MADI is defined by

MADI = medianv |I(v)− Imed|2 , (1)

where I(v) denotes the image intensity at position v. For normal distributed
data, 1.4826 ·MADI is approximately equal to the standard deviation.

We scale the image intensities such that they are in the interval [0, 1000]
using the equation

Inorm(v) =
(I(v)− Imed) · 167

1.4826 ·MADI
+ 500. (2)

Rescaled intensity values Inorm(v) outside the bounds of the interval [0, 1000] are
clamped accordingly.

2.2 Prostate detection

We identify a region of interest (ROI) in the image that contains the prostate by
adapting the face detection algorithm of Viola and Jones [4]. We slide a detection
window of fixed size through the image, and compute for each subimage defined
by the current detector position whether it contains the prostate or not. As
a classifier, we use boosted decision tree stumps that classify on the basis of
3D Haar-like features. The most discriminative features are selected during the
training phase by adapting Adaboost as described by Viola and Jones [4].

The tissue within the prostate’s bounding box itself is relatively homogeneous
and does not contain features that are expressive enough for reliable classifica-
tion. In order to improve the detection accuracy, we train our classifier such
that it detects a slightly enlarged bounding box which also contains surrounding
tissue. By enlarging the bounding boxes of the training data by a factor of two
in x and y direction, meaningful features can be learned which allow for robust
prostate detection. After the detection phase, the detected ROI is shrinked to
obtain the prostate’s bounding box.

2.3 Probabilistic Active Shape Model

Having determined its bounding box, we segment the prostate with the PASM [6],
which is a flexible variant of the ASM [7] that allows for a more accurate delin-
eation. The PASM employs a Statistical Shape Model (SSM) in order to avoid
that the segmentation leaks into neighbouring structures. The SSM is learned
from a set of S training shapes. Each shape is represented by N 3D landmarks,
which have been concatenated to a 3N-dimensional vector xi, 1 ≤ i ≤ S. We



assume that the shapes are in correspondence, which means that landmark k
describes the same anatomical feature on all shapes. Correspondence has been
established with a nonrigid mesh registration algorithm, whose description is
beyond the scope of this paper.

The SSM is constructed by a Principal Component Analysis of the training
shapes. We compute the mean shape x̄ = 1

S

∑S
i=1 xi and the S − 1 eigenvectors

p1, . . . ,pS−1 with non-zero eigenvalues λ1 ≥ . . . ≥ λS−1 > 0 of the covariance

matrix C = 1
S−1

∑S
i=1(x− x̄)(x− x̄)T . We select the dimension t of the SSM’s

eigenspace such that it represents 98% of the observed variance, that is t =

argmint′

{
(
∑S−1

i=1 λi)
−1(

∑t′

i=1 λi) ≥ 0.98
}

.

With the SSM, each shape x can be represented by x = x̄+ Pb+ r, where
P = (p1, . . . ,pt) is a matrix containing the first t eigenvectors, b = P T (x− x̄)
and r is a residual vector.

The PASM is initialized by placing the mean shape x̄ into onto the prostate
in the image. A scale factor and a translation vector that map x̄ from the SSM’s
coordinate system to the image coordinate system can be easily computed from
the bounding box of x̄ and the detected prostate bounding box. After initial-
ization, the shape model is iteratively adapted to the image. In each iteration,
the shape is deformed such that it matches image features detected by an ap-
pearance model (Sec. 2.4). The deformed shape x̂ is then constrained with the
SSM by minimizing an energy (Sec. 2.5). The algorithm terminates after a fixed
number of 30 iterations.

2.4 Appearance model

Our appearance model is based on oriented 1D intensity profiles which consist
of seven sampled intensity values. For each profile f , we can define a set of 1D
Haar-like features: Each feature H = (j, l1, l2, l3) can be uniquely defined by an
offset j and three subprofile lengths l1 ≥ 1 and l2, l3 ≥ 0. The feature value for
H is defined by

h(f , H) =

l̂1−1∑
i=j

fi −
l̂2−1∑
i=l̂1

fi +

l̂3−1∑
i=l̂2

fi (3)

with l̂k = j +
∑k

i=1 lk.
In the training phase, we sample for each landmark profiles on the boundary

which we label with 1 as well as slightly displaced profiles which we label with 0.
Then, we train a boosted classifier that discriminates between boundary and non-
boundary profiles based on 1D Haar features. Again, we use decision tree stumps
as base classifiers and select the most discriminative features with Adaboost.

During segmentation, we sample several intensity profiles in the vicinity of a
landmark and use the trained classifier to compute the probability of a profile
that it is a boundary profile. The deformed shape x̂ is determined by optimal
surface detection [8], in which we select a consistent set of image features across
the whole shape by solving a max-flow problem.



2.5 Constraining shapes with energy minimization

The deformed shape x̂ is constrained by minimizing the energy

E(x; x̂,w) = α · (Eimage(x; x̂,w) + Elocal(x)) + Eshape(x) (4)

where α is a balancing parameter (α = 0.5 throughout this work), and w ∈ IR
contains a weight for each landmark that assesses the confidence of its appear-
ance model. The energy minimization is performed in the coordinate system of
the SSM, which means that scale, translation and rotation must not be affected
by the optimization. The transformation from image to model coordinate system
is done as in the standard ASM [7]. For minimization, we use the limited-memory
BFGS algorithm.

The global shape energy Eshape(x) ensures that the shape is similar to the
training shapes. It is defined by

Eshape(x) =
1

2

t∑
i=1

bi
λi

+
S − t− 1

2 ·
∑S−1

i=t+1 λi
‖r‖2 (5)

and approximates the negative log-likelihood of a shape, under the assumption
of a Gaussian shape distribution.

It is important to note that the global shape energy does not restrict shapes
to the subspace spanned by the t principal eigenvectors, as the magnitude of the
residual vector r is allowed to be larger than zero. This allows a more flexible
adaption of the SSM to unseen shapes than in the standard ASM. A local shape
energy regularizes this additional deformation such that the organ’s contour
remains smooth. It is defined by

Elocal(x) =

N∑
i=1

∑
j∈N (i)

‖x(i) − µ(i) − x(j)‖2, (6)

where x(i) ∈ IR3 denotes the coordinates of landmark i, N (i) denotes the set of
neighbors of i, and µ(i) = x̄(i)− 1

N (i)

∑
j∈N (i) x̄

(j) is the average relative position

of a landmark to its neighbours. The integration of µ(i) in Eq. 6 guarantees that
characteristic curvature features of the shapes are preserved.

Finally, the image energy ensures that the optimized shape x is close to the
detected appearance features. It is defined by

Eimage(x; x̂;w) =

N∑
i=1

‖wi(x
(i) − x̂(i)) +

∑
j∈N (i)

wj(x
(j) − x̂(j))‖2. (7)

In contrast to the image energy previously proposed [6], Eimage(x; x̂;w) penal-
izes the net deviation of neighboring landmarks from their corresponding image
features. By this, the image energy counteracts a shrinking force caused by the
local shape energy. The texture weights wi are normalized such that they sum
up to N . Thus, image energy and local shape energy are automatically balanced.
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Fig. 2. Boxplot showing quantitative segmentation results on the 50 training scans.
Detector corresponds to the automatic approach. GT box corresponds to initialization
of the shape model using the ground truth bounding box.

3 Experimental Design

We trained and tested our algorithm quantitatively on the 50 training cases of
the Promise12 challenge. Moreover, we performed qualitative tests on the 30
test cases of the challenge, for which no ground truth was provided. In order
to avoid training and testing on the same data, experiments on the training
data was done using leave-one-out appearance model training and 5-fold cross
validation for prostate detector training. Experiments on the test data exploited
the complete training data. We measured the segmentation accuracy compared
to the ground truth with Dice Coefficient, Average Symmetric Surface Distance
(ASD) and Hausdorff Distance (HD). As the prostate detector does not always
estimate the prostate’s bounding box well, we performed additional experiments
by initializing the PASM using the ground truth bounding box (GT Box ) in order
to quantify the segmentation accuracy of the PASM under optimal initialization.

4 Results and Discussion

4.1 Quantitative Results

Quantitative results of our experiments are listed in Figure 2 and Table 2. The
automatic algorithm achieves in most cases an accurate segmentation of the
prostate. For 37 out of 50 scans, the Dice coefficient is larger than 0.8. However,
on four scans, the segmentation failed completely (Dice < 0.5), which was caused
by misdetection of the prostate. Segmentation results with low dice coefficient
mainly coincide with slightly displaced bounding box estimates, or misjudgment
of the prostate’s size. The quantitative results we obtained when using the ground
truth bounding box for initializing the shape model shows that the segmentation
itself is robust given appropriate initialization. On the 30 test cases, the prostate
was accurately located in every scan.

http://promise12.grand-challenge.org


Table 1. Quantitative results on the training data with different initialization. Shown
are median and interquartile range (IQR) as well as mean and standard deviation (SD)
of the respective measure from 50 experiments.

Dice ASD [mm] HD [mm]
Median IQR Mean SD Median IQR Mean SD Median IQR Mean SD

GT box 0.87 0.06 0.86 0.06 1.43 0.64 1.60 0.63 9.14 2.62 9.51 2.73

Detector 0.85 0.09 0.77 0.23 1.68 1.13 4.10 7.81 10.65 4.95 15.00 14.72

Table 2. Overview of implementation details and the efficiency of our approach.

Parameter Value

A
lg

o
ri

th
m

Language: C++

Libraries/Packages: Insight Toolkit (ITK), Visualization
Toolkit (VTK)

Multi-Threaded: only used during training (OpenMP)

User Interaction: none

M
a
ch

in
e CPU Clock Speed: 2.5 GHz

Machine CPU Count: 4

Machine Memory: 8 GB

Memory Used During Segmentation: ≈ 300 MB

T
im

e

Training Time (Prostate detector): 36 hours (for 50 studies)

Training Time (Appearance model): 8 minutes (for 50 studies)

Image Preproccesing Time: 6-8 minutes (per study)

Prostate Detection Time: ≈ 1 second (per study)

Shape Model Adaption Time: ≤ 18 seconds (per study)

Total Segmentation Time: 6-8 minutes (per study)

4.2 Implementation Details & Efficiency

Our approach was implemented in C++. We used the open source library Insight
Toolkit (ITK) (www.itk.org) for image processing and its sublibrary VNL for
numerical computations such as the BFGS optimization. While we used OpenMP
(www.openmp.org) to parallelize the training phase, the segmentation algorithm
itself is single-threaded. The training of the prostate detector is relatively com-
plex and requires up to 36 hours on a standard desktop PC. Moreover, we require
approximately eight minutes for training the appearance models of all landmarks.
The segmentation algorithm requires between 6 to 8 minutes for segmenting a
study. Most of the running time is spent for image preprocessing, in particular for
bias field correction. After preprocessing, prostate detection and the actual seg-
mentation requires less than 20 seconds. An overview of implementation details
and the efficiency of our approach are listed in Table 2.

www.itk.org
www.openmp.org


5 Concluding Remarks

In this paper, we presented an automatic algorithm for segmenting the prostate
in T2-weighted MR images. Our evaluation shows that the segmentation al-
gorithm achieves accurate segmentation of the prostate given an appropriate
initialization of the shape model. The initialization is provided by a very fast
prostate detector, which estimates the prostate’s bounding box accurately in
most images. However, in some rare cases the detector fails to detect the prostate
or misjudges its size. In these cases, accurate segmentation is not possible. Con-
sidering the good performance of the detector on the test set, we believe that
the robustness of the detector can be considerably improved by increasing the
training set. For use in clinical practice, it would also be possible to reinitialize
the model manually in case of misdetection.

With our approach, both prostate detection and segmentation can be done
in a few seconds on preprocessed image data. The bottleneck of our implemen-
tation is currently the bias-field correction. We expect that a multi-threaded
implementation of CLIC [5] would at least halve the computation time on to-
day’s multi-core CPUs. Alternatively, the image filter can be replaced by faster
algorithms with the same purpose.
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