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Abstract

This document briefly describes techniques we used in automatic segmentation

of the prostate in transversal T2 MRI for the PROMISE12 challenge. We used

bridging, skip connection, ReLU and ELU cluster and our proposed cos-diceloss

to enhanced the performance of stacked U-nets, namely W-net.

1. Cos-Dice Loss

We propose Cos-Dice Loss Function:

LCosDice = cosQ
(π

2
·DSC

)

, Q > 1. (1)

Where Q is an adjustable number. As it shown in Fig. 1, the cos-dice loss is

smoother than dice loss when the intersection percentage is large and rougher

than dice loss when the intersection percentage is small.

2. Network architecture

Our network is based on U-net[1], which is a classical encoder-decoder net

in medical image application. Based on U-net, a stacked U-net is proposed.
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Figure 1: Dice loss and cos-dice loss with different factor Q

The stacked U-net improves network performance by using the first U-net to

find a coarse feature and use the second U-net to obtain a fine result. The

stacked U-net is, however, not useful for medical image segmentation. It is hard

to reach convergence and usually dive into a sub-optimal solution because the

increasing complexity of network. To overcome the issue, we propose a network

bridging method. Different from the previous stacked U-net which acquires

large number training data, bridging two U-nets can reduce the training cost

and makes the network fit for medical application where the training data are

usually not sufficient. This is because bridging two U-nets can fully use different

features in multi levels, which will accelerate the convergence of neural network.

Our network structure is shown on Fig. 2. The gray block represents a ELU

cluster (2 conv-BN-ELU blocks), and the yellow block represents a ReLU cluster

(2 conv-BN-ReLU blocks). The dotted lines represents network bridging. The

red lines represents skip connections.
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Figure 2: W-net architecture. The number above each block represents the number of feature

channels. The number inside each block represents the sequence number. The number below

each block means the image size.
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