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Abstract. As an entry to the MICCAI 2012 Prostate Segmentation
Challenge, this paper presents a multi-atlas-based automatic pipeline for
segmenting prostate in MR images. Image registration is needed to trans-
fer expert-defined ground-truth prostate segmentation from atlases onto
target image. However, registration is rendered difficult in this dataset,
due to different images having different field of view (FOV), different
imaging protocol (from multiple imaging centers), large anatomical vari-
ability around prostate and large pathologic variability (some having
enlarged prostate or prostate cancer). To overcome these limitations, we
propose a ”zooming process” for multi-atlas-based prostate segmenta-
tion. We first register all atlases onto target image to obtain an initial
segmentation of the prostate. This step includes robust registration, atlas
selection and majority-based label fusion. Then, we ”zoom-in”: re-run all
atlas-to-target registrations, but this time restricting the registration to
the vicinity of the prostate, ignoring compounding structures that are
far away from the prostate and are largely variable. As a result, we can
expect more accurate registrations and hence refined prostate segmen-
tation. Our cross-validated results show improvement in segmentation
by robust registration and atlas selection, compared to using all atlases.
Additional improvement is observed when zooming in and focusing on
registration of the prostate vicinity. We report average 0.84 dice overlap
with expert-defined prostate segmentation in training subjects. Accuracy
in testing datasets will be released by organizers of this challenge.

1 Introduction

In MICCAI 2012 Prostate Segmentation Challenge, participants are provided
with 50 training prostate MR images, each having expert-defined prostate seg-
mentation. The task is to segment prostate in 30 testing prostate MR images.
In such a setting, we present a multi-atlas-based segmentation pipeline. The
central idea is to transfer those expert-segmentations in training images (i.e.,
atlases) onto target image through image registration, and then fuse the trans-
ferred segmentations to derive an ultimate prostate segmentation in the target
image. Previous studies (e.g., [1–4]) have reported plausible results using multi-
atlas strategy to segment prostate, with average dice of 0.75–0.80 compared to
expert-defined ground-truth.
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In the dataset used in MICCAI 2012 Prostate Segmentation Challenge, sev-
eral factors pose large difficulties to image registration, which is the fundamental
component in multi-atlas segmentation framework. Those factors include: large
variability of the MR images not only in terms of image intensity characteristics
(e.g. scanner variability, inhomogeneities, etc.) but also in structures. Images
may often have different field of views (FOVs) and are obtained from differ-
ent imaging centers (see Fig. 3 for example). Consequently, the registration,
affine or deformable, may often times fail. Aside from anatomical variabilities,
this dataset contain some unidentified subjects with enlarged prostate or even
prostate cancers, causing pathological variabilities.

To overcome these limitations, the proposed method is based on a zooming
process: atlas-to-target registration to land an initial segmentation of prostate;
then ”zoom in”, focusing only on the vicinity of prostate and re-do atlas-to-target
registration to increase accuracy in registration and hence segmentation.

The key to guarantee the success of this zooming process is to obtain reason-
ably good initial segmentation of the prostate before zooming in to its vicinity.
To this end, a registration method that is robust against the image variation
is used, followed by iterative label fusion and atlas selection (it is not uncom-
mon to expect certain number of registrations to fail, therefore we need to have
an automatic mechanism to remove those failed cases from label fusion). Our
experiments in training dataset will show that this strategy shall yield an ini-
tial segmentation of prostate that is of average 0.81 dice overlap with expert-
segmentation (see Fig. 2 ”phase 1” results). Obtaining this reasonably high ac-
curacy is important, as we can now zoom in to the dilated version of the initial
segmentation mask and expect the whole prostate being included in this dilated
mask. The remaining part is straightforward – with much less interference from
those structures far away from the prostate, we can focus on registering prostate
vicinity well and finally obtained a refined final segmentation of the prostate.
This zooming process has lifted the average dice to 0.84 in our experiment.

In the following, we will describe details of our pipeline in Section 2, with
some demonstrations in training dataset in Section 3. Section 4 discusses and
concludes this paper.

2 Methods

We will detail the proposed zooming process in this section. The whole pipeline
is depicted in Fig. 1. In this figure, light pink box contains the first phase, where
whole-image atlases are registered to whole-image target to land a tentative
segmentation of the prostate (e.g., the orange region in the rightmost figure
within pink box). Then, in the second phase, we zoom into prostate and its
vicinity, as shown in the gray box. Here we refine all registrations and obtain the
final segmentation of the prostate (e.g., the red region in the rightmost figure
within gray box). The following two sub-sections will describe each of those two
phases.
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Fig. 1. The proposed pipeline. We rely on the whole atlases for initial segmentation of
the prostate (phase 1, pink box), and then zoom in to the vicinity of prostate to obtain
the final multi-atlas-based segmentation (phase 2, gray box).

2.1 Initial Multi-Atlas Segmentation: Find Prostate Location

In this first phase, we will use whole image registration from multiples atlases to
target to obtain an initial segmentation of the prostate. Due to large variations
in imaging protocols, FOVs, structures, anatomies and even pathology condi-
tions among different subjects, registration from an atlas to the target is a very
different task (see Fig. 3 for example). To ease this difficulty, we will describe
below two measures: a) to use a robust registration algorithm; b) to automati-
cally select atlases and potentially remove atlases whose registrations to target
image have failed.

For registration algorithm, a recently-developed non-rigid registration algo-
rithm is used for warping atlas images to the target. This algorithm, termed
DRAMMS registration [5], is based on an attribute-based similarity metric. That
is, it finds voxel correspondences by rich set of geometric texture at each voxel,
other than by image intensity alone. The high dimensional multi-scale and multi-
orientation Gabor textures have rendered each imaging voxel more distinctive
and therefore better identifiable during search for correspondence. Furthermore,
when registering an atlas to the target image, this algorithm relies more on the
regions that can establish a more reliable matching compared to other regions.
Such an approach is particularly well suited to the registration of prostate im-
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ages, where the two images may have significant differences, or even missing
correspondence (i.e., some structures present in one image but not the other).

For atlas selection and removal, we shall keep those atlases that are similar
to target image and on the other hand, remove those atlases whose registrations
to target image have failed. We automate this process in an iterative fashion. At
the very beginning, we used all atlases for label fusion (using a population label
fusion method STAPLE [6]). After having obtained a tentative prostate seg-
mentation, we measure atlas-to-target similarity by a) mutual information (MI)
within the tentative segmented region, b) correlation coefficient (CC) within the
tentative segmented region and c) dice overlap between warped prostate region
and the tentative prostate segmentation. Those atlases having less than 90% of
the maximum MI, less than 90% of the maximum CC and less than 50% of the
maximum dice overlap among all atlases are considered having failed registra-
tion with target image and thus removed. The remaining atlases are weighted
by their MI × CC values in a globally weighted majority voting label fusion.
The assumption here is to trust more on those atlases having higher similarity
with the target image after registration. This way, we get an updated prostate
segmentation. We iterate between label fusion and atlas selection/ranking until
convergence. The convergence criterion is met if the prostate segmentations in
two consecutive iterations become relatively stable (> 90% dice), or otherwise
repeat the above process till convergence. After convergence, the prostate seg-
mentation mask in this phase 1 will be used for initializing phase 2 (focusing on
prostate vicinity) in the next subsection. All the above mentioned parameters
are optimized by leave-one-out experiments in training dataset.

2.2 Final Multi-Atlas Segmentation: Focus on Prostate Vicinity

The tentative prostate segmentation by the above phase 1 has an average 0.81
dice overlap with expert-define ground truth. This shows that phase 1 has suc-
cessfully located majority part of the prostate in the target image.

With this reasonably good localization of the prostate in target image, we
can now zoom in and focus on prostate vicinity in both atlas and target images.
We first isotropically dilate the prostate mask obtained from phase to 1.5 times
its volume, to make sure the dilated mask can cover the whole prostate (together
with other surrounding structures). This way we have zoomed into prostate vicin-
ity in the target image. To also zoom into prostate vicinity in atlases images, we
proportionally dilate the ground-truth prostate masks in atlases. Readers can
follow the arrows pointing from pink box to gray box in Fig. 1 to visualize this
zooming process for extracting prostate vicinity in both atlases and target im-
ages. It should not be difficult to observe the immediate benefits of this zooming
process – a large part of registration difficulties caused by different FOVs, dif-
ferent structures, and to some extent image inhomogeneity have been removed.
Now we only need to register prostate vicinity in atlas and target images, which
is a much easier problem than registering the whole images. Here we have also
used DRAMMS registration software [5]. The resultant warped prostate masks



Multi-Atlas-Based Prostate Segmentation 5

are fused by the same strategy we have used in phase 1 (majority voting with
iterative atlas ranking and selection).

3 Results

To demonstrate the effect of atlas ranking/selection and the effect of zooming
process, we compared accuracies obtained from 4 different multi-atlas segmen-
tation methods: MV – majority voting based on all warped atlases, no zooming
process; STAPLE – based on all warped atlases, no zooming process; the pro-
posed phase 1 – the proposed iterative weighted MV label fusion together with
atlas ranking and selection, but no zooming process; the proposed phase 1+2 –
the entire proposed pipeline, including both phase 1 (initial prostate localization)
and phase 2 (zooming process with focus on prostate vicinity).

Fig. 3 visualizes segmentation by our proposed pipeline (green contours) as
well as ground-truth segmentation (red contours), for 6 typical training sub-
jects. These 6 subjects are randomly chosen from different imaging centers. For
each subject, we used the remaining 49 subjects in training as atlases. During
atlas selection, usually 10-15 atlases will be automatically kept. Fig. 2 quan-
tifies segmentation accuracy in those cases, as measured by dice overlap with
ground-truth segmentation.

We have several interesting findings from Fig. 2. First of all, atlas ranking and
selection improve segmentation accuracy. This is expected, as removing those
atlases that fail to register to target image should reduce confusions in label
fusion. Also, the proposed zooming process does offer additional improvement
in segmentation accuracy, accompanied by reduced standard error, showing the
advantage of focusing on prostate vicinity.

Fig. 2. Segmentation accuracy in 6 typical training subjects. Here accuracy is measured
by dice overlap with expert-defined ground truth segmentation.
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4 Discussion

This paper proposed a fully automatic pipeline for segmenting prostate MR
images. We made two contributions in this study. The first is using robust im-
age registration and especially atlas selection in multi-atlas-based segmentation
framework. Due to large variability in prostate images across subjects, failure
in atlas-to-target registration is not uncommon. Therefore, using robust image
registration method to reduce the number of failures and developing criterion
for removing failed atlases become key to accurate segmentation.

Our second contribution is the development of a zooming process and its
proof of concept. The idea is to focus on registration of the prostate vicinity, in
the hope of improving registration accuracy in prostate regions and hence the
accuracy in segmentation. By doing so, we largely reduce the negative impact
from those highly variable structures far away from the prostate. As a result, we
observed significant improvement in segmentation accuracy.

We have applied this automatic pipeline to all 30 testing images in MIC-
CAI 2012 Prostate Segmentation Challenge. Results will be disclosed by the
organizers of this challenge.
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Fig. 3. Visualization of segmentation results in 6 randomly chosen subjects from train-
ing set. Red contours are ground truth by expert segmentation. Green contours are
generated by our proposed pipeline.


