Fully Automatic Segmentation of the Prostate
using Active Appearance Models

Graham Vincent, Gwenael Guillard, and Mike Bowes

Imorphics Ltd., Kilburn House, Manchester Science Park, Manchester, M15 6SE, UK.

Abstract. We present a fully automatic model based system for seg-
menting the prostate in magnetic resonance (MR) images. The segmen-
tation method is based on Active Appearance Models (AAM) built from
manually segmented examples provided by the MICCAI 2012 Promisel2
team. High quality correspondences for the model are generated using
a Minimum Description Length (MDL) Groupwise Image Registration
method. A multi start optimisation scheme is used to robustly match the
model to new images.

The model has been cross validated on the training data to a good degree
of accuracy, and successfully segmented all the test data.

1 Introduction

Prostate diseases such as prostate cancer, prostatitis and benign prostate hyper-
plasia (BPH) are common in afflictions in men. Prostate cancer is the third most
common cancer worldwide, and (due to a huge increase in screening) is now the
most commonly diagnosed cancer in men in the US [4].

Several diagnostic and therapeutic procedures could benefit from accurate
estimates of the volume and boundary of the prostate. In particular accurate
prostate volume measurement combined with prostate-specific antigen level is
thought to be a good indicator of treatment outcome [9], and robust measure-
ments of the prostate boundary is an important component of radiotherapy
planning [5]

It is well known that prostate segmentation in MR is challenging, as prostates
show a wide range of shape variation, and the prostate and neighbouring blood
vessels, bladder, urethra, rectum and seminal vessels vary considerably in image
response. and have complex intensity distributions. Furthermore MR suffers from
distortions due to field inhomogeneity. Prior information on shape and intensity
is essential.

Here we have used a statistical modelling pipeline (developed for the seg-
mentation of the knee [12]) to build a model of the total prostate. The model
fitting is based on the Active Appearance Models (AAMs) of Cootes et al, in
which the statistics of shape and image information, and the correlations be-
tween them, are calculated from a training set of images. Variants of AAMs
have been extensively developed (see [3] for a review).



The model is built using 50 transverse T2-weighted MR images and voxel-
based segmentations provided by the Promisel2 organisers. The model was eval-
uated using a Leave-One-Out Cross Validation (LOOCV) and by comparing the
automated segmentation to the reference segmentation. The organisers also pro-
vided 30 test cases without reference segmentations. The model was used to
segment these test cases and the results visually validated.

Several authors have developed segmentation methods for total prostate
which use statistical shape or appearance models as part of the process.

Toth et al [11] use an extension to Active Shape Models in which the mod-
els are trained on multiple features for each voxel based on combinations of
Gaussian feature responses, the features being selected during training for their
discrimination between prostate border and background.

Martin et al [7] uses a probabilistic atlas registered to each example followed
by a 3D deformable model driven by image features and the probabilistic priors
from the registered atlas,

Other authors have used classification of voxel based descriptors. Moschidis
and Graham [8] report on the differential segmentation of peripheral, transitional
and fibro-muscular zones, as well as the total prostate. Moschidis uses random
forest classification on a feature space consisting of intensities, spatial position,
Haralick and Laws features, regularised by a graph cut in which the regional
terms are provided by the classifiers and the boundary term based on edge
strength.

2 Methods

2.1 Converting voxel-based segmentations to surfaces

Our statistical models are surface based, so a marching-cube algorithm ([6]) was
used to generate surfaces from the voxel-based segmentations which have 1 inside
the prostate, 0 outside.

2.2 Generating surface correspondences

Statistical appearance models rely on a large set of anatomically equivalent land-
marks (also known as correspondences) across the region of interest. Generating
good quality correspondences is key to developing generalisable yet specific mod-
els.

To obtain the anatomical correspondences on the prostate surfaces we used
a variant of the Minimum Description Length approach to Groupwise Image
Registration (MDL-GIR) of Cootes et al [2]. The MDL-GIR method finds the set
of deformations which register all the images together as efficiently as possible.
This idea is made concrete by the use of Information Theory to define the amount
of information required to encode a model using a particular set of deformations.
The method is an optimisation to find the set of deformations requiring the least
amount of information to encode. The output is a reference mean image and a
set of deformations which map the mean image to each example image.



We apply the MDL-GIR method to the signed distance images derived from
the segmented surfaces. The output reference mean image is, like the input im-
ages, a signed distance image and can be straight forwardly segmented using
the zero valued iso-surface. The mean surface is then propagated by the appro-
priate deformation field into the frame of each example. For each example the
propagated surface lies close to the segmented surface and is projected onto it
to generate correspondence points which are guaranteed to lie on the segmented
surface.

The number of correspondence points output from this process is approxi-
mately 7000.

2.3 Active appearance models

An appearance model is a statistical model of the shape of a structure and associ-
ated imaging information. It is useful to process the imaging information further
to obtain feature response images such as gradients, corners and other points of
interest [10]. We refer to all such imaging information and their derivatives as
texture.

An appearance model has a set of parameters which control both the shape
and the texture, and are generative i.e. a specific parameterisation can generate
a realistic looking example of the shape and texture.

An AAM can match its appearance model an image from a rough initial
estimate, by optimising the model parameters to generate an example which
matches the image as closely as possible (using the least squares sum of resid-
uals). This can be made efficient by pre-computing the Jacobian describing the
average change in residuals with respect to changes in model parameters on a
training set.

A AMs require an initial estimate of the model parameters including position,
rotation and scale. We provide multiple initial estimates at a grid of starting
points across the image. The grid of starting points are typically 20mm apart
in all directions. This is done at a low image and model resolution with a small
number of measured residuals to make it reasonably fast. The results of these
searches are ranked according to the sum of squares of the residual, and a propor-
tion (typically 75%) removed from consideration. The remaining search results
are used to initialise models at a higher resolution, and so on. Finally, the single
best result at the highest resolution gives the segmentation result.

2.4 Segmentation pipeline
In summary, the segmentation proceeds according to the following pipeline:

— For each image:
e Run N (typically 10s-100s) AAMs of the prostate from a grid of starting
positions across the image at low resolution.
* Run the 25% best results at increased resolution
* Repeat until at highest resolution
e Choose best result



2.5 Experiments

The model is built from 50 transverse T2-weighted MR images and voxel based
segmentations provided by the Promisel2 organisers. These images are multi-
centre, multi-vendor and multi-protocol and as a consequence are challeng-
ing: there is variation in voxel size, dynamic range, position, field of view and
anatomic appearance.

To test the performance of the algorithm we use the standard Leave-One-Out
Cross Validation (LOOCV) technique where each image ¢ in turn is segmented
using a model built from the training set with image ¢ removed and then com-
pared against the reference segmentation.

A variety of statistics are reported in the literature: the most common are
the Dice Similarity Coefficient (DSC), Mean Absolute Distance (MAD) and the
95th% Hausdorff Distance (95%HD) [1]. The DSC measures the amount of over-
lap between the reference segmentation and the automated segmentation. DSC
can range from zero to one, where zero represents no overlap and one corresponds
to identical segmentations. The directed Hausdorff Distance (HD) identifies the
point on the reference segmentation that is the farthest from any point on the
model segmentation and measures the distance from this point to the nearest
point on the model segmentation. The 95%HD is less sensitive to outliers than
HD since it considers the point representing the 95th percentile of the distances
instead of the farthest. Although these measures are quite standard, they can
vary slightly in their definition and the lack of an exact definition or of a refer-
ence in a paper make any comparisons difficult. This is especially true for HD
since a directed and a symmetrical versions of it exist and authors rarely specify
which one they use.

3 Results and Discussion

In this section we present the results of the LOOCV on the training datasets
provided for the Promise12 Grand Challenge and made a comparison with recent
papers in the literature (see Table 1). We note that this is not a comprehensive
review, and that comparisons should always be considered tentative, as datasets
can vary in consistency - which is of course part of the motivation for the Grand
Challenges.

Table 1. A comparison between our method and recent papers in the literature, where
possible.

mean DSC|median DSC/MAD (mm)|95th%HD

(mm)
Our fully automated AAM|0.88 (0.03)|0.89 1.44 (0.48) |4.17 (1.35)
Martin et al [7] 0.87 2.41
Toth el al [11] 0.85 (0.05)

Moschidis et al [8] 1.0 (0.1)




As the DSC is an overall measure that does not give any spatial information,
we also generate a colour-coded error surface. One benefit of our method is that
the training 3D pointsets and the automatic segmentation result are anatomi-
cally corresponded thus providing thousands of registered 3D landmarks. We are
then able to generate statistics on a per-point basis, in this case, the distance
error. For each 3D point and for each segmentation, the Euclidean distance of
the point to the nearest point in the reference segmentation pointset is computed
and represents the error. Then the mean error across the dataset is evaluated
for this corresponded point. To display the results, we compute a mean prostate
corresponded pointset from the shape component of the AAM and we colour
each point according to its mean error.

Fig. 1. Map of the mean distance error projected. From left to right: anterior, posterior,
apex, base.

The spatial distribution of the errors (Fig. 1) shows that our model produces
slightly less good results at the apex and the base of the prostate. The lack of
accuracy at the top and the bottom can be explained by the fact that these
areas present a quite continuous change of tissue without strong edge or texture.
We are confident that including more structures such as the bladder in the
model would significantly improve the results. The anterior apex is surrounded
by tissues that have texture with very variable edges (Fig. 2), parallel to the
prostate boundary and that are often even stronger that the boundary itself.
Incorporating structured texture detectors into our model may help improve the
accuracy in these regions.

It was extremely encouraging that the prostate model worked well ”out of
the box”. The model segmented every test case completely automatically with
DSC scores similar or better than those reported in the literature (see Table 4).

The model was also used on test images provided by the MICCAI 2012
Promisel2 team. These images present the same characteristics than the training
data. Since no segmentation is available, we only performed a visual check and
considered that the results were very similar to the LOOCV experiment.

For a practical application it might be acceptable to allow some user inter-
action (e.g. an initial localisation) to improve speed and accuracy. However our
focus here was to achieve genuine automation. This is not necessarily just a
matter of more compute power: very specific models are needed to avoid hallu-



Fig. 2. Representative slice of the top front of the prostate with highly textured sur-
rounding tissues. In yellow, reference segmentation ; in red, automated segmentation.

cinating in other areas of the image whilst ensuring the models are generalisable
enough to match to new data.

4 System details

Language C++
External Libraries VXL
GPU Optimisation None
Multi-threaded? No

User interaction? None - fully automatic
CPU clock speed 2.83 GHz
Machine CPU count 4
Machine memory 8GB
Memory used during segmentation|300MB
Training time 2 hours
Segmentation time per image 8 minutes
User interaction time 0 seconds

5 Conclusions

In this paper we have presented a fully automatic AAM based model to segment
the prostate from T2 weighted MR images, built and cross validated on the
Promisel2 training data, and which successfully and automatically segmented
the Promisel2 test data.
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