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Abstract. We propose an interactive active learning (AL) approach for
prostate segmentation from magnetic resonance (MR) images. A VOI is
manually defined and its probability map is generated using a Random
forest (RF) classifier. The RF is trained using semisupervised learning
(SSL) and informative labels are queried using active learning and ran-
dom walks. Graph cuts are used to obtain the final segmentation. Our
method was applied to the PROMISE12 Prostate segmentation dataset.
The classifier was trained on the training dataset consisting of 50 patient
volumes and then applied to the test data comprising 30 volumes.

1 Introduction

Prostate cancer is one of the leading cause of male cancer death in the USA
[1]. Automatic prostate segmentation from magnetic resonance (MR) images
is important for radiotherapy, prostate volumetry and calculation of prostate
specific antigen (PSA) density. However it faces challenges due to: 1) variability
of prostate size and shape between subjects; 2) different MR scanning protocols
resulting in different image appearances and intensity ranges; 3) the lack of clear
prostate boundaries due to similar intensity profiles of surrounding tissues.

Prostate segmentation from computed tomography (CT) and Ultrasound
(US) images have been widely investigated [2,3]. MRI has gained popularity
because of lack of ionising radiations as in the case of CT images and better con-
trast between soft tissue organs than US scans. However, accurate delineation
of the prostate’s border remains difficult even for the human observer.

Klein et al. [4] proposed a multi-atlas matching for prostate segmentation
using localized mutual information. Toth et al. [5] used shape prior deformable
models while Li et al. [6] used auto context and level-sets to achieve binary seg-
mentation of the prostate. In the MICCAI 2012 prostate segmentation challenge,
different approaches used learning techniques [7], multi-atlases [8], active shape
models (ASM) [9] and active appearance models (AAM) [10,11] to name a few.

Recent research has focused on learning highly discriminative image features
from pre-annotated images. A robust algorithm requires many example cases
to learn from a wide range of image appearances. However, obtaining manual
annotations is very expensive, time consuming and requires personnel with high
expertise. We propose an interactive machine learning (ML) based segmentation
method that requires significantly fewer labeled samples, yet achieves higher



segmentation accuracy than conventional ML methods. Our algorithm uses 1)
an active learning (AL) strategy that queries the labels of informative regions;
and 2) semi-supervised learning (SSL) that uses a few labeled samples and many
unlabeled samples to construct a highly accurate classifier.

2 Image Features

The features are extracted from a 31 × 31 patch around each voxel, while the
query patches are 8× 8. Intensity, texture and curvature features combined give
a 85 dimensional feature vector, while context features give an additional 96
features. Since our emphasis in this paper is the combination of SSL and AL
techniques, we give a brief description of each feature and refer the reader to
[12] for details.

2.1 Intensity Statistics

MR images commonly contain regions that do not form distinct spatial patterns
but differ in their higher order statistics. Therefore, in addition to the features
processed by the human visual system (HVS), i.e., mean and variance, we extract
skewness and kurtosis values from each voxel’s 31 × 31 neighborhood.

2.2 Texture Entropy

Texture maps are obtained from 2-D (instead of 3D) Gabor filter banks for each
slice (at orientations 0◦, 45◦, 90◦, 135◦ and scale 0.5, 1). Each 31×31 image patch
is partitioned into 9 equal parts corresponding to 9 sectors of a circle. Figure 1 (a)
shows the template for partitioning a patch into sectors and extracting entropy
features. For each sector we calculate the texture entropy given by

χr
ani = −

∑

tex

pr
tex log pr

tex. (1)

pr
tex denotes the probability distribution of texture values in sector r. This pro-

cedure is repeated for all the 8 texture maps over 4 orientations and 2 scales to
extract a (8 × 9 =) 72 dimensional feature vector.

2.3 Curvature Entropy

Different tissues have different curvature distributions and we exploit this char-
acteristic for accurate prostate identification. Details on curvature calculation is
given in [12]. Similar to texture, curvature entropy is calculated from 9 sectors
of a patch and is given by

Curvr
ani = −

∑

θ

pr
θ log pr

θ. (2)

pr
θ denotes the probability distribution of curvature values in sector r, and θ

denotes the curvature values.
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Fig. 1. (a) partitioning of patch for calculating anisotropy features; (b) template for
calculating context features.

2.4 Spatial Context Features:

Context information is particularly important for medical images because of the
the regular arrangement of human organs. Figure 1 (b) shows the template for
context information where the circle center is the current voxel and the sampled
points are identified by a red ‘X’. At each voxel corresponding to a ‘X’ we
calculate the mean intensity, texture and curvature values from a 3 × 3 patch.
The texture values were derived from the texture maps at 90◦ orientation and
scale 1. The ‘X’s are located at distances of 1, 3, 5, 8 voxels from the center, and
the angle between consecutive rays is 45◦. The values from the 32 regions are
concatenated into a 96 dimensional feature vector, and the final feature vector
has (96 + 85 =)181 values.

3 Methods

3.1 Initial Preprocessing

The given images are first bias-corrected using the method in [13] to remove
intensity inhomogeneities due to the magnetic field of MR machines. The inten-
sities are then normalized to [0, 1]. Pixels with the lowest 5% intensities usually
indicate noise, and are all set to zero. Similarly, higher intensity tails in the
intensity histogram indicate artifacts and outliers. Hence the mean of the 5%
brightest intensity values is taken to be the maximum image intensity. All inten-
sity values are divided by this threshold and ratios exceeding one are set to one.
Normalization also increases the image contrast. A manual VOI is drawn by the
user and all subsequent computations are restricted to this VOI. This helps: 1)
save time; and 2) to reduce false positives in classification since the background
has regions with widely varying intensity profiles.

A given test image is divided into non-overlapping uniform 8×8 patches and
an expert identifies one patch each belonging to prostate and background. The
voxels of each patch now have the same labels. Features (described in Section 2)
are extracted for each voxel. The features of labeled and unlabeled patches are



(a) (b) (c) (d)

Fig. 2. (a) Original image divided into patches (green). Colored patches show prostate
(yellow), background (blue) and VOI (magenta). Manual ground truth segmentation is
in red; Probability maps for (b) prostate and (c) background. Red indicates maximum
value of 1 and blue indicates 0; (d) final segmentation obtained by our method in green
and manual segmentation in red.

used as inputs to an RF based SSL classifier (denoted as RF − SSL). RF −
SSL outputs the class labels and probabilities of the unlabeled voxels. We are
interested only in the class probabilities for determining the most informative
patch for label query.Note that the designated probability value for a patch is
the average of its constituent pixels.

The label information of the queried sample is used to update the classifier
using the online learning strategy of [14] and predict a new set of labels. Figure 2
(a) shows the original image and the patches as shown to the expert. The patches
selected by the clinician as prostate (yellow) and background (blue), and the VOI
of the slice (magenta) are also shown. Manually annotated prostate is shown in
red. Note that the manually annotated regions are not shown to the clinician
and are used only for evaluating the accuracy of our algorithm. Figures 2 (b,c)
show the VOI probability maps for prostate and background, followed by our
segmentation in Figure 2 (d) (green).

3.2 AL Query Strategy

Our query strategy selects a sample with the following characteristics: 1) high
classification uncertainty to obtain novel information from each labeling instance;
2) situated in a dense region such that it is representative of many other samples;
and 3) minimal overlap of influence from previously labeled samples to minimize
redundancy in labeling effort.

Choosing the query sample is similar selecting the most salient region of an
image based on some measure of informativeness. Salient image regions have the
following characteristics: 1) their feature values are significantly different from
surroundings (high local contrast); and 2) contrast magnitude is higher than
other regions and hence it stands out visually.

High contrast regions have maximum information and hence higher entropy
[15]. Regions with high classification uncertainty also have high entropy, indi-



cating a correspondence between information content of salient regions and clas-
sification uncertainty. Salient regions are located on regular objects (or dense
regions of the sample space) and different salient regions are far away from each
other, i.e. their influence areas have minimum overlap. Thus we see that the
properties of salient regions have similarities with the desired characteristics of
query samples. Hence saliency models can be adapted for active learning tasks
using appropriate similarity metrics.

Image patches are represented as nodes V of a graph G, and connected by
set of edges E. Based on the similarity between any two nodes i and j a weight
wij is assigned to edge eij . Random walks on the graph determine the most
frequently visited node which is also the most salient node. For further details
we refer the reader to [16,17]. Informativeness of node i (or patch x) is given by

Inf(i) = {φ(i), A, α} . (3)

φ is the classification uncertainty of i given by the entropy as

φ(i) = −
∑

ŷ

P ((ŷ|i) log P ((ŷ|i) , (4)

where ŷ indicates all possible labels (in this case two) for i, and P ((ŷ|i) is cal-
culated by RF-SSL. High entropy indicates greater uncertainty. α incorporates
contextual information, and A is the collection of intensity, texture and curvature
differences defined as

A = [Intij Texij Curvij ]. (5)

where Intij =
∑

j∈N e−|Inti−Intj |/σ2

is the sum of exponential of intensity dif-
ferences between node i and all unlabeled nodes j in N (a 48×48 neighborhood
of x), and σ = 1. For similar nodes, Intij takes higher values. Texij and Curvij

are the corresponding texture (from the oriented map at 90◦) and curvature
differences. Note that we do not average the feature differences over the neigh-
borhood. In a high density region A is calculated by summing over more voxels
than in a sparsely populated region. Since A is not divided by a normalization
constant its value is higher in a high density region.

Context Information for Informativeness: Medical images have inher-
ent context information because the relative arrangement of organs in the human
body is constant, and similar tissues are clustered together. An unlabeled sample
close to a labeled sample is assigned lower importance because it has a higher
probability of having the same label than a sample far away. With every an-
notation we want to derive maximum information about its neighbors. If the
radiologist were to annotate samples close to an already labeled sample it does

not generally lead to significant information gain. Thus α incorporates context
information and is equal to i’s distance from the nearest labeled sample

α = min
(∥∥i − iL

∥∥) . (6)

where iL denotes all the labeled samples (or nodes), and ‖.‖ denotes the Eu-
clidean distance based on voxel co-ordinates.



Thus the feature vector of node i (Fi or the informativeness Inf(i)) consists
of 5 values i.e., entropy, intensity, texture and curvature differences, and α. The
weights between two nodes i and j are given by

wij = exp

(
−‖Fi − Fj‖

2

σ2

)
, (7)

where σ = 1, and ‖.‖ denotes L2 norm. Nodes with similar features have higher
connecting weights.

Thus we observe that Eqn. 4 encodes the classification uncertainty of a node
(or image patch), Eqn. 5 quantifies the patch’s density and Eqn. 6 determines
whether a patch is situated within the region of influence of an already labeled
sample. Note that for φ and A the value of the patch is the average of its
constituent voxels, and α is determined by the distance between the center voxels
of each patch. The corresponding elements of Fi and Fj have values in the same
range. If the two nodes i and j are similar the differences of each element is
also in the same range. The query node has high differences with its neighboring
nodes and is thus the most salient node as discussed previously.

3.3 Random Walks and Most Salient node

Current saliency detection algorithms incorporate more sophisticated conditions
for salient region detection that takes into consideration global image charac-
teristics. Similarly active learning based query detection can be significantly
improved by using saliency algorithms that incorporate more global image in-
formation (such as graph based methods).

The most salient node is identified by the random walks algorithm on the
graph. Let us denote as Ei(Tj) the expected number of steps to reach state j

if a Markov chain is started in state i at time t = 0. It is also known as the
hitting time, and can be derived from the fundamental matrix (Z) of an ergodic
Markov chain and its equilibrium probability distribution π. The global saliency
of node i is given by the sum of hitting times from all other nodes to node i on
a complete graph, i.e.,

Hi =
∑

j

Ej(Ti), (8)

and the most salient node is given by the maximum Hi as Ns = arg maxi Hi.
For details the reader is referred to [17]. Labels are queried for Ns.

Stopping Criteria: After every classification we determine the distribution
of probability values for a single class and compare with the corresponding values
in the previous iteration using the Student t−test. p < 0.05 denotes statistically
different classification in the current iteration. However, p > 0.05 indicates minor
difference in the distributions. If p > 0.05 for two consecutive iterations there is
no further querying of labels.



3.4 Graph Cut Segmentation

A spatially smooth solution is obtained by formulating the segmentation as a
labeling problem within a second order MRF cost function. The labels are ob-
tained by optimizing the cost function using graph cuts [18]. The labels are
obtained for each voxel and not for individual patches. A second order MRF
energy function is given by

E(L) =
∑

s∈P

D(Ls) + λ
∑

(s,t)∈N

V (Ls, Lt), (9)

where P denotes the set of pixels and N is the set of neighboring pixels for pixel
s. λ is a weight that determines the relative contribution of penalty cost (D)
and smoothness cost (V ). D(Ls) is given by

D(Ls) = − log (Pr(Ls) + ǫ) , (10)

where Pr is the likelihood (from probability maps) previously obtained using
RF classifiers and ǫ = 0.00001 is a very small value to ensure that the cost is a
real number. The penalty cost encourages high label probability.

V ensures a spatially smooth solution by penalizing discontinuities. Let the
normalized weight (importance measures) of the different features be wI (inten-
sity), wT (texture) and wC (curvature), where wI + wT + wC = 1. V is given
by

V (Ls, Lt) =

{
wIVI + wT VT + wCVC , Ls 6= Lt,

0 Ls = Lt.
(11)

where VI , VT , VC are the individual contributions to the smoothness by intensity,
texture and curvature. VI is defined as

VI(Ls, Lt) = e−
(Is−It)

2

2σ2 ·
1

‖s − t‖
, (12)

I denotes the intensity. VT and VC are similarly defined using texture and curva-
ture instead of intensity. Smoothness cost is determined over a 8 neighborhood
system.

4 Experiments and Results

As part of the MICCAI 2012 prostate segmentation challenge (http://promise12.grand-
challenge.org/) the training dataset consists of 50 transversal T2-weighted MR
datasets of the prostate. The dataset is a representative set of the types of
MR images acquired in a clinical setting. The data is multi-center and multi-
vendor and has different acquisition protocols (e.g. differences in slice thickness,
with/without endorectal coil). The set is selected such that there is a spread in
prostate sizes and appearance. Reference segmentations are available for each
dataset. We employ a 10 fold cross validation where training is done on 45



datasets and tested on 5 datasets. We report average test results over all pa-
tients. N3 intensity non-uniformity correction was applied to reduce intensity
inhomogeneity and the image intensities are normalized using the method in
[19]. Table 2 gives details about different aspects of our algorithm. The quality
of our segmentations was evaluated using two measures: 1) Dice Metric (DM)
and 2) Hausdorff Distance (HD).

4.1 Segmentation Results

We present comparative results on the training data for:

1. SSL − AL: Our proposed segmentation algorithm using RF, SSL and AL.;
2. FSL: our automatic fully supervised learning based prostate segmentation

of [20] that does not use active learning. A 5 fold cross validation approach
is used.

3. SSL−ALnV : SSL−AL without incorporating variable importance measures
in smoothness cost V .

4. SSL − ALCV : SSL − AL with 5 fold cross validation where the classifier
is trained using SSL and AL on the training data and the trained classifier
used to segment the test images without expert feedback. For segmenting
the the test data we use the manually defined VOI for SSL − AL and then
segment the prostate. Our segmentation results on the test set are obtained
by applying SSL − ALCV .

Fig. 3 shows segmentation results on Patient 24 using the above methods.
Table 1 summarizes the average segmentation results over all patients for differ-
ent methods. SSL − AL gives the best segmentation results, and significantly
improves over FSL’s performance with p < 0.001. SSL − AL achieves higher
segmentation accuracy using fewer labeled samples, which translates to less la-
beling time. SSL − ALnV gives lower segmentation accuracies than SSL − AL

because of the absence of importance measures in V . This is particularly impor-
tant while segmenting regions of low contrast whose appearance is similar to its
neighbors.

SSL−ALCV ’s performance is very close to that of SSL−AL with p > 0.1.
This indicates that SSL and AL combine nicely to give a robust classifier even
if it does not have access to the labels of the target scans in terms of expert
feedback. Importantly, SSL−ALCV is able to select the right samples to learn
from and build a robust classifier.

SSL − ALCV takes significantly less time because of the manually defined
VOI due to which it does not have to automatically locate the VOI. Since there
is no expert feedback for SSL − ALCV computation time is further reduced.
Although SSL−ALCV ’s computation time is less its performance is very similar
to SSL − AL.

5 Conclusion

We have presented a interactive method for prostate segmentation using active
learning and semi supervised learning. Semi supervised learning makes optimal



Table 1. Quantitative measures for segmentation accuracy. DM-Dice Metric in %,
HD-Hausdorff distance in mm, Time-computation time in minutes.

SSL − AL FSL SSL − ALnV SSL − ALCV

DM 91.9 90.2 87.3 91.3

HD 6.2 7.9 10.3 6.8

Time(min) 12.3 21.2 12.6 10.9

Fig. 3. Segmentation results for Training Patient 24. The manual annotations are
shown in red with the algorithm segmentations in green: SSL−AL (Column 1), FSL

(Column 2), SSL−ALnV (Column 3), and SSL−ALCV (Column 4). Each row shows
results for different slices of the same volume.

use of labeled and unlabeled data while active learning makes optimal use of
annotations by lowering their redundancy. Active learning queries labels of sam-
ples that provide maximal information gain, and the query strategy is based
on: 1) high classification uncertainty by the SSL classifier; 2) its location in a
dense region such that it is representative of many other samples; and 3) mini-
mizing overlap of region of influence of every labeled sample such that optimal
classification is achieved using minimum number of samples. We obtain higher
segmentation accuracy than FSL methods with less than 50% samples, a signif-
icant reduction in labeling effort.
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