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Abstract. We propose a novel automatic method for accurate segmen-
tation of the prostate in T2-weighted magnetic resonance imaging (MRI).
Our method is based on convolutional neural networks (CNNs). Because
of the large variability in the shape, size, and appearance of the prostate
and the scarcity of annotated training data, we suggest training two
separate CNNs. A global CNN will determine a prostate bounding box,
which is then resampled and sent to a local CNN for accurate delineation
of the prostate boundary. This way, the local CNN can effectively learn
to segment the fine details that distinguish the prostate from the sur-
rounding tissue using the small amount of available training data. To
fully exploit the training data, we synthesize additional data by deform-
ing the training images and segmentations using a learned shape model.
We apply the proposed method on the PROMISE12 challenge dataset
and achieve state of the art results. Our proposed method generates ac-
curate, smooth, and artifact-free segmentations. We achieve an average
Dice score of 91.2 on training and validation data. Our two-step segmen-
tation approach and data augmentation strategy may be highly effective
in segmentation of other organs from small amounts of annotated medical
images.

1 Introduction

Segmentation of prostate in T2-weighted magentic resonance imaging (MRI) is
an essential step for many tasks in treatment planning and intervention [13,38].
Automatic segmentation methods are highly desirable because they can increase
the speed and reproducibility of the segmentation. In the past decades, many
studies have proposed (semi-)automatic methods for prostate segmentation in
T2-weighted MRI [36,9,15]. However, fully automatic prostate segmentation is
very challenging because of the inter-patient variability in the prostate size,
shape, and appearance, variations in the scanners and scanning protocols, and
similarity of the prostate with the surrounding tissue.

A large number of the methods proposed for prostate segmentation in T2-
weighted MRI use atlases [11,21]. In these methods, a number of MR images



with known prostate segmentation are registered to the target image. Mutual
information, cross-correlation, image feature correspondence, and the image gra-
dient are among the image similarity metrics used for registration. The deformed
prostate segmentation masks of the atlas images are combined to infer the seg-
mentation of the prostate in the target image. Therefore, atlas-based methods
turn the segmentation problem into a registration problem. A critical choice in
these methods is how to combine/fuse the registered segmentation masks. One
can rank the segmentation masks based on some image similarity metric and
choose the most similar segmentation, or use more elaborate methods such as
majority voting, STAPLE, or iterative label fusion [4,11,12]. In general, atlas-
based methods can produce poor segmentations, especially if the target image is
very different from the population of the images in the atlas. To achieve accept-
able results, some atlas-based methods rely on additional steps based on statis-
tical shape models [21,22,7]. Moreover, most of the atlas-based methods follow
a global registration strategy, which makes them unnecessarily sensitive to the
anatomical features that are far away from the prostate and increases the com-
putational time. To overcome these shortcomings, some studies have proposed
two-step registration approaches in which a global registration if first performed
to identify the location of the prostate in the image. In the seconds stage, a local
registrtation is performed by focusing on the prostate region [35,25].

Another class of methods includes those based on deformable models such
as active shape models and level sets [37,16,10,30,32]. A great appeal of these
methods is that they are based on sound theory from physical sciences and math-
ematics. However, these methods can be very sensitive to initialization [31] and a
good initialization may be hard to obtain. Moreover, the quality of segmentation
can be poor where the edge information is not strong. Therefore, some of these
methods depend on manual initialization or rely on other prioir information in
the form of shape models to regularize the generated segmentation mask [33,3].

Some studies have proposed methods based on graph cuts [5,18]. Although
these methods are versatile, they have their own limitations. For example, they
produce poor results at the locations of weak edges and typically need post-
processing steps in order to obtain satisfactory results. Recently, some stud-
ies have shown that the performance of graph cut-based methods can be sub-
stantially improved by using active contours and by formulating the graph cut
method in terms of super-voxels instead of raw voxel intensities [27,28].

Because of the difficulties faced by the methods mentioned above, a large
number of studies have tried to combine the advantages of two or more of these
frameworks. Many of these methods also use some type of machine learning to
achieve improved results. For example, several studies have combined proba-
bilistic learning of the distribution of prostate texture or voxel intensities with
shape models [29,20,1]. Supervised and un-supervised machine learning meth-
ods such as random forests and clustering methods have also been combined
with deformable models and atlas-based methods for prostate sementation in
T2-weighted MRI [19,8,6].



Despite the great efforts and numerous methods that have been proposed
in recent years, automatic segmentation of prostate in T2-weighted MRI still
remains a challenge. Most of the proposed methods achieve much lower per-
formance than manual segmentation. If the test images are different than the
images used for model development, e.g., due to inter-patient variability or dif-
ferent scanning protocols, the performance of these methods can deteriorate
substantially.

In recent years, deep convolutional neural networks (CNNs) have achieved
unprecedented results in segmentation of natural images [17,2,24]. Compared to
the more traditional segmentation methods, the new CNN architectures that
have been proposed for dense segmentation possess a number of highly desirable
characteristics: 1) they have a very high capacity that enables them to effectively
describe the large variations that exist in the training data, 2) they are able to
explain local and global information at different resolutions simultaneously, 3) in
many applications they can achieve quite satisfactory results without the need
to additional steps to refine their segmentation, which also implies that they
can be trained end-to-end as a single module, and 4) even though they have
long training times, their inference time is very fast. Consequently, many stud-
ies have recently employed CNNs for segmentation of medical images [14] and,
in general, they have reported very promising results. For segmentation of the
prostate in T2-weighted MR images, in particular, deep CNNs with volumet-
ric convolutional filters have been shown to achieve very good results [23]. One
study resampled the ground-truth segmentation to generate prostate masks with
different resolutions for more effective training of a deep CNN [34]. The trained
CNN was applied on sub-volumes of the input image and averaging of the prob-
ability maps estimated for all sub-volumes was used to obtain the final prostate
segmentation. The proposed method achieved state of the art results, which was
attributed to the use of short and long residual connections in the network. An-
other study proposed a deep CNN with 2D and 3D residual connections and
achieved state of the art results [26].

2 The proposed method

We propose a new CNN-based method for segmentation of the prostate in T2-
weighted MR images. The details of the method and results will be published in
a future paper. Here, we summarize some of the main ideas.

We argue that the difficulty in achieving human-level performance in this task
is due to the large variability in the shape, size, and appearance of the prostate in
these images. Based on the results achieved by CNNs in segmentation of natural
images, we think that theoretically they should be able to achieve human-level
performance in prostate segmentation in T2-weighted MRI. However, this is not
easy to achieve in practice because it is hard to effectively train large CNNs with
small amounts of annotated data. To reduce this gap and effectively utilize the
capacity of deep CNNs with limited training data, we suggest two strategies:



1. We suggest training two CNNs. The first, global, CNN will accept the entire
image as its input and generate a soft prostate segmentation mask. This ini-
tial segmentation is then used to determine the location and the extent of the
prostate in the image. A second, local, CNN will then work on a sub-volume
of the image. This will allow the second CNN to focus on learning features
that are most relevant for accurate delineation of the prostate boundary,
which is a major challenge due to similarity with the surrounding tissue and
scarcity of the training data.

2. We use massive data augmentation for training of the two CNNs. Here,
our argument is that even 50 training images are not sufficient to train
large CNNs. Therefore, we synthesize additional realistic data by deforming
the training images and their segmentation masks using displacement fields
computed based on a prostate shape model. To further improve the training
and avoid local minima, random displacements and noise are introduced
during training. Moreover we identify the images that are more difficult to
segment and use this information in an active learning framework.

A schematic representation of the steps involved in our fully-automatic seg-
mentation method is shown in Figure 1. A schematic representation of the CNN
architecture is shown in Figure 2.

Fig. 1. A schematic representation of the steps involved in the proposed segmentation
method.

2.1 Training and evaluation

We used the data from the PROMISE12 challenge [15]. This dataset consists of
50 training and 30 test images, which have been acquired at different centers and
using different scanners and scanning protocols. The dataset is very challenging
because of the large variation in the voxel size, field of view, and dynamic range



Fig. 2. A schematic representation of the CNN architecture used in this study. The
network shown in this figure has a depth of 4. The global and local networks used in
this study had depths of 5 and 3, respectively.

of the images as well as in the appearance of the prostate. Approximately half
of the images include an endorectal coil.

We used a five-fold cross validation approach. Each time, the two CNNs were
trained on 40 of the images and evaluated on the remaining 10 images.

3 Results

Table 1 shows the average and standard deviation of the Dice score on the
training and validation images. In order to show the effect of the different steps
in our segmentation pipeline, we have shown the resulting Dice score after each
step. Our proposed method achieves a high final Dice score of 91.2 with a low
standard deviation of 2.0.

Global CNN Local CNN Post-processing

Training 85.0 ± 3.9 91.0 ± 2.3 91.2 ± 2.2
Validation 84.9 ± 4.1 90.4 ± 2.3 91.2 ± 2.0

Table 1. Mean±standard deviation of the Dice score for training and validation images
after each step in the segmentation pipeline.
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